【智嵌物联】16路网络继电器控制器

深圳总部

地址:广东省深圳市宝安区新桥街道新桥社区

新和大道 6-18 号 1203

网址: www.zhiqwl.com 电话: 0755-23203231

北京办事处

地址:北京市房山城区德润街6号院8号楼3层

电话: 18210365439

天猫店铺

淘宝店铺

微信公众号

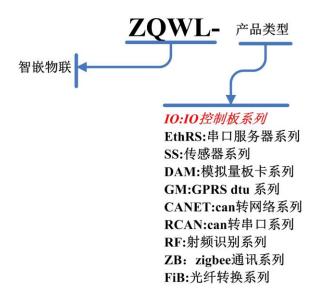
公司官网

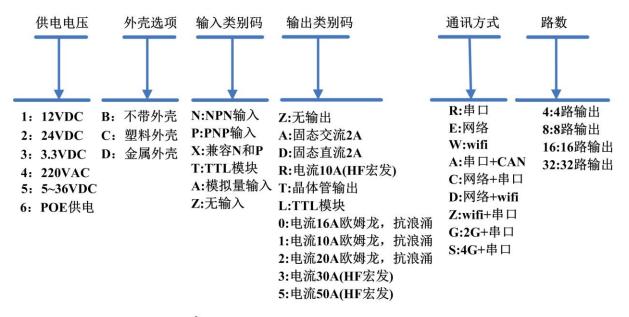
京东店铺

修订历史

版本	日期	原因	
V1.0	2021.06.27	更新 word 样式、增加高级功能章节	
	2021.12.15	1、增加 ASCII 控制指令	
V1 1		2、增加 modbus 功能码 0x10	
V1.1		3、增加脉冲计数介绍	
		4、增加设备间的一对一联动控制配置方法	

目 录


1.	关于	手册		1
	1.1	命名规	2则	
	1.2	本手册] 适用型号	
	1.3	相关产	品资料下载	
2.	产品	快速入i	了	3
	2.1	功能特	f点	
	2.2	硬件准	怪备	
	2.3	使用配	已置软件控制	
	2.4	使用网	网络调试助手控制	
3.	产品	ℷ规格		9
	3.1	电气参	送数	
	3.2	工作环	、境参数	
	3.3	EMC 🕅	方护等级	
	3.4	继电器	弱规格	
	3.5	数字量	量输入参数	
	3.6	通信参	>数	10
4.	硬件	接口及机	Π械尺寸	11
	4.1	产品接	5口布局	1
		4.1.1	ZQWL-IO-1BX1C16、	ZQWL-IO-2BX1C16 接口布局1
		4.1.2	ZQWL-IO-1BXRC16、	ZQWL-IO-2BXRC16 接口布局1
		4.1.3	ZQWL-IO-1CNRC16、	ZQWL-IO-2CNRC16、ZQWL-IO-1CN1C16、ZQWL-IO-2CN1C161
		4.1.4	ZQWL-IO-1DXRC16、	ZQWL-IO-1DX1C16、ZQWL-IO-2DXRC16、ZQWL-IO-2DX1C16 14
	4.2	设备开	子关量输入	14
	4.3	设备组	性电器输出接线	1
	4.4	指示灯	ſ	1
5.	模块	参数配置	重	18
	5.1	智嵌网	网络 IO 配置软件	
	5.2	网页参	※数配置	
6.	设备	的高级功	力能	23
	6.1	心跳包	<u> </u>	
		6.1.1	心跳包	
		6.1.2	注册包	
	6.2	设备级	及联控制	2
	6.3	设备C	ll 输入状态自动上报	24
	6.4	设备C	II 输入与 DO 输出联	动24
	6.5	设备与	5设备之间联动	2
	6.6	延时脚	f开控制	2!
	6.7	定时挖	控制	20
	6.8	串口服	员务器功能	2
7.	模块			28
	7.1			2
		7.1.1	控制指令	2
		712	配置指今	31


7.2	ASCII	控制协议		. 32
	7.2.1	设置 DO 继电器输出状态		. 32
	7.2.2	设置单路 DO 继电器状态		. 32
	7.2.3	设置 DO 继电器延时断开时间		. 33
	7.2.4	只读取 DI 状态		. 33
	7.2.5	只读 DO 继电器状态		. 34
	7.2.6	DI 的脉冲计数值清零		. 34
	7.2.7	只读 DI 的脉冲计数值		. 35
7.3	Modb	ous rtu 协议		. 35
7.4	Modk	ous rtu 指令码举例		37
7.5	Modk	ous TCP 协议		. 41
8. 恢复	出厂设	置以及固件升级	42	
8.1	恢复	出厂设置		. 42
8.2	模块	固件升级		. 42
9. 应用	案例		43	
9.1	网络	IO 控制器接入智嵌云控演示		. 43
9.2	网络	IO 控制器设备间一对一联动控制配置方法		. 49
常见故	障处理.		53	
销售网:	络		54	

1. 关于手册

1.1 命名规则

智嵌物联继电器控制设备的命名规则如图 1.1 所示。

如: ZQWL-IO-1CNRC16

12V供电/带外壳/NPN输入/10A电流/网络+串口/16路输出

图 1.1 命名规则

1.2 本手册适用型号

除特别说明,本手册所介绍的功能均适用型号如表 1.1 所示。

不同型号的设备在硬件参数上有所差别,软件功能上完全一样,本手册的案例以 ZQWL-IO-1BX1C16 为例进行说明,其他型号的设备用法完全一样。

表 1.1 本手册适用型号表

				16 路继	电器输出			
型号	供电电	通信	DI 输入	继电器	继电器参	外壳尺寸	购买链接	说明
	压	接口		品牌	数			
ZQWL-IO-1BXRC16	12V			宏发	10A			四种型号只是供
ZQWL-IO-1BX1C16		RS485	16 路 DI	欧姆龙	详细参数	不带外壳		电电压不同、继
		网口	兼容 NPN/PNP	\/\	见表 3.4	150*127*18mm	点击购买	电器品牌不同,
ZQWL-IO-2BXRC16	24V			宏发		(长*宽*高)		其他功能及用法
ZQWL-IO-2BX1C16				欧姆龙				完全一样
ZQWL-IO-1DXRC16	12V			宏发	10A			四种型号只是供
ZQWL-IO-1DX1C16		RS485	16 路 DI	欧姆龙	详细参数	金属外壳		电电压不同、继
ZQWL-IO-2DXRC16	24V	网口	兼容 NPN/PNP	宏发	见表 3.4	298*83*28mm	<u>点击购买</u>	电器品牌不同,
ZQWL-IO-2DX1C16				欧姆龙		(长*宽*高)		其他功能及用法
								完全一样
ZQWL-IO-1CNRC16	12V			宏发	10A			四种型号只是供
ZQWL-IO-1CN1C16		RS485	8 路 DI	欧姆龙	详细参数	导轨安装		电电压不同、继
ZQWL-IO-2CNRC16	24V	网口	高电平有效	宏发	见表 3.4	145*90*40mm	点击购买	电器品牌不同,
ZQWL-IO-2CN1C16						(长*宽*高)		其他功能及用法
								完全一样

1.3 相关产品资料下载

2路网络继电器控制器使用手册下载地址:点击下载

4路网络继电器控制器使用手册下载地址:点击下载

8路网络继电器控制器使用手册下载地址:点击下载

16 路网络继电器控制器使用手册下载地址:点击下载

32 路网络继电器控制器使用手册下载地址:点击下载

配置工具下载地址:点击下载

₽ 更多产品请到官网或线上商城查看。

2. 产品快速入门

智嵌物联研发的 16 路网络继电器设备,是一款 16 路 NPN 和 PNP 兼容型光电输入、16 路继电器输出的工业级 IO 控制板。控制板具有 1 路以太网口和 1 路 RS485 通讯接口,可以通过 Modbus TCP/RTU 或自定义协议实现对该控制板的控制,也可以通过本公司开发的上位机控制软件控制。本控制板具有串口服务器功能(网络和 RS485 数据互相转换)。

继电器输出负载电流 10A,继电器品牌可选,具体型号说明详见表 1.1 所示,或直接向公司业务咨询。

2.1 功能特点

- ◆ 工业级;
- ◆ 16 路 DI、16 路 DO、1 路 RS485、1 路 RJ45;
- ◆ 支持主动上报、定时控制、联动控制、延时断开等。
- ◆ 支持静态和动态 IP;
- ◆ 支持 modbus 指令、ASCII 控制指令、自定义控制指令;
- ◆ 支持脉冲计数:
- ◆ 支持网线交叉直连自动切换;
- ◆ TCP 服务器模式下,可支持 4 个客户端的连接;
- ◆ 支持 DNS 功能;
- ◆ 可以跨越网关,交换机,路由器:可以工作在局域网,也可工作在互联网:
- ◆ 支持协议包括 ETHERNET、ARP、IP、ICMP、UDP、DHCP、TCP;
- ◆ 支持 Modbus TCP 转 RTU 功能;
- ◆ 支持心跳包、注册包。
- ◆ 支持接入智嵌云。
- ◆ 支持 APP 控制。
- ◆ 支持串口服务器功能。
- ◆ 丰富的 LED 状态指示灯,快速定位问题:
- ◆ 支持本地升级;
- ◆ 支持导轨安装。

本节是为了方便用户快速对该产品有个大致了解而编写,第一次使用该产品时建议按照 这个流程操作一遍,可以检验下产品是否有质量问题。

注意,测试前请务必检查电源适配器是否与控制板型号相符合,如果没有特别注明,本文档均以ZQWL-IO-1BX1C16为例说明。

所需要的测试软件可以到官网下载:

http://www.zhiqwl.com/

2.2 硬件准备

为了测试 ZQWL-IO-1BX1C16, 需要以下硬件:

- ZQWL-IO-1BX1C16 一个;
- 12VDC@1A 电源 1 个;
- 串口(或 USB)转 RS485 接头 1(如果不测 RS485 功能,可以不用);
- 网线 1 根;

图 2.1 硬件准备

2.3 使用配置软件控制

本公司提供有控制软件,第一次使用时建议使用该智嵌物联的配置软件来控制。 控制板的出厂默认参数如表 **2.1** 所示。

表 2.1 设备默认参数

项目	参数	说明
用户名	admin	此两项用于网页登录
密码	admin	
IP 地址	192.168.1.253	
子网掩码	255.255.255.0	
网关	192.168.1.1	
工作模式	TCP_SERVER	
本地端口	1030	
RS485 波特率	115200	
RS485 参数	None/8/1	

1. 测试之前必须保证电脑的 IP 是和设备 IP 处于一个网段内,如果不在一个网段内,需要重新设置电脑的 IP 地址(静态 IP),如图 2.2 所示。



图 2.2 电脑 IP 地址设置

2. 硬件连接

用网线将电脑的网口和设备的网口连起来,并接上电源适配器(注意,"VCC"接电源正极(红线),"GND"接电源负极(黑线)。

3. 选择正确的网卡

网口灯正常后(一个灯常亮,一个灯闪烁),打开控制软件并选择合适的网络适配器(与设备的 IP 在同一网段)。

图 2.3 选择正确的网络适配器

4. 搜索设备

点配置软件中的"搜索设备"按钮,如果硬件连接正常并且 IP 设置正常,则会搜到设备,如图 2.4 所示。

5

图 2.4 搜索设备

5. 对设备进行控制

选中搜到的设备,用鼠标双击,或点软件左上角的"设备",选择下拉列表"IO 控制",如图 2.5 所示。



图 2.5 控制设备 1

弹出控制页面如图 2.6 所示。

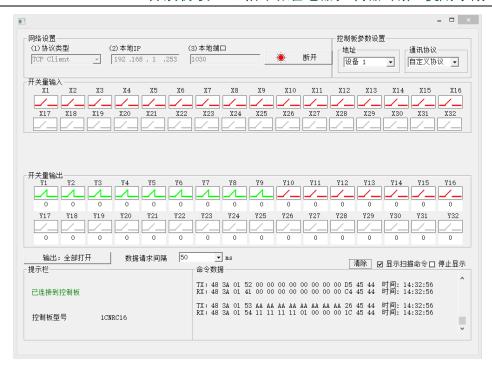


图 2.6 控制设备 2

说明:

模拟输入: "模拟输入"对本控制板无效。

开关量输入: X1~X16 即为控制板的 DI 输入状态,红色表示无信号,绿色表示有信号; 开关量输出: Y1~Y16 即为控制板的 DO 继电器输出状态,红色表示继电器的常开触点 与公共端断开,绿色表示继电器的常开触点与公共端闭合,可以通过单击来改变状态。

输入输出状态的数据请求间隔可以设定,默认是 200ms。如果将"显示扫描命令"打勾,则会看到输入输出的数据请求指令发发送以及控制板的返回,如图 2.7 所示。

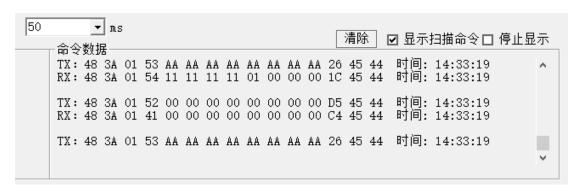


图 2.7 命令显示窗口

调试时一般不将该选项打勾,以便手动发送的命令和返回的数据方便看到。例如,手动点"输出:全部打开",如图 2.8 所示。



图 2.8 全部打开/关闭

至此,已实现通过智嵌物联专用的配置软件对设备的 DO、DI 进行控制的目的了。

2.4 使用网络调试助手控制

通过网络调试助手向设备发送控制指令,即可实现对设备的控制,指令格式详见第7章介绍。

打开网络调试助手,在网络助手的"协议类型"下拉列表中,选择"TCP Client"(控制板的工作模式是 TCP SERVER);将"服务器 IP 地址"一栏中输入设备的 IP 地址: 192.168.1.253。在"服务器"端口一栏中输入控制板的本地端口: 1030。以上都设置好后,点击"连接",连接成功后,连接按钮的状态将变成红色灯,如图 2.9 所示。

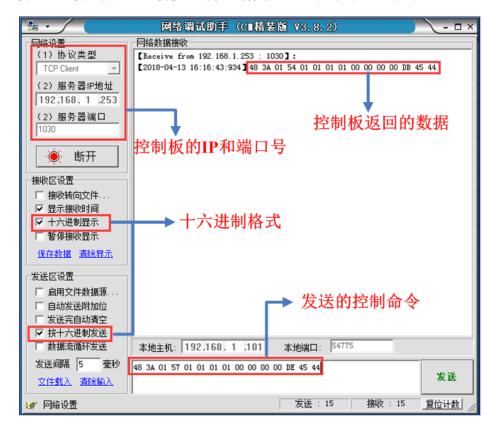


图 2.9 网络调试助手发命令控制设备

3. 产品规格

本小节除特别说明,所列参数均适用表 1.1 所示的型号。

3.1 电气参数

除非特别说明,所列参数是指 T_{amb} =25 $\mathbb C$ 时的值。

表 3.1 电气参数

适用型号	参数名称	额定值			单位
坦用至与	多 奴石柳	最小值	典型值	最大值	丰世
ZQWL-IO-1BXRC16	电源电压	11V	12	13V	V
ZQWL-IO-1BX1C16	工作电流				
ZQWL-IO-1CNRC16	(16 路继电器全打开)	-	550	-	mA
ZQWL-IO-1CN1C16	(10 始终电命至11月)				
ZQWL-IO-2BXRC16	电源电压	21V	24	25V	V
ZQWL-IO-2BX1C16	工作中次				
ZQWL-IO-2CNRC16	工作电流	-	270	-	mA
ZQWL-IO-2CN1C16	(16 路继电器全打开)				

3.2 工作环境参数

表 3.2 工作环境参数

参数名称		单位		
少 数石 小	最小值	典型值	最大值	平江
工作环境温度	-40	-	85	$^{\circ}\mathbb{C}$
存贮温度	-40	-	85	$^{\circ}\!\mathbb{C}$
工作环境湿度		5~95%RH		-

3.3 EMC 防护等级

除非特别说明,所列参数是指 T_{amb} =25 $^{\circ}$ C时的值。

表 3.3 防护等级参数

接口	浪涌等级	ESD 等级
电源接口	8/20μS 波形: ±2KV	空气放电: ±15KV
通信接口	10/70μS 波形:±4KV	接触放电: ±8KV
按键及其他	-	

3.4 继电器规格

除非特别说明,所列参数是指 T_{amb} =25 $^{\circ}$ C时的值。

表 3.4 10A 继电器具体参数如表:

项目	参数		
	欧姆龙继电器	宏发继电器	
额定负载	10A@AC250V	10A@AC277V	
	10A@30V	10A@28V	
触点接触电阻	50mΩ以下	100mΩ以下	
动作时间	15ms 以下	10ms 以下	
复位时间	5ms 以下	5ms 以下	
最大开关频率	机械: 18,000 次/小时	-	
	额定负载: 1,800 次/小时	-	
寿命	机械: AC 1,000 万次以上、DC 2,000 万次	机械: 10 万次	
	以上(开关频率 18,000 次/小时)		
	额定负载: 10 万次以上@额定负载(开关	额定负载:5万次以上@额定负载(开关	
	频率 18,00 次/小时)	频率 360 次/小时)	

❶ 继电器输出端子:常开、常闭、公共端

3.5 数字量输入参数

设备数字量输入电平有两种规格:2.7V~7V 规格和 6V~30V 规格,默认 6V~30V 规格,如有特殊需求,请联系公司销售。除非特别说明,所列参数是指 T_{amb} =25 $^{\circ}$ C时的值。

表 3.5 数字量输入参数

设备输入规格	参数名称		额定值		单位
		最小值	典型值	最大值	半江
6V~30V 规格	高电平输入电压	6.0	-	30	V
	低电平输入电压	-	-	4V	V
2.7V~7V 规格	高电平输入电压	2.7	-	7	V
	低电平输入电压	-	-	1.5	V

3.6 通信参数

除非特别说明,所列参数是指 T_{amb} =25 $^{\circ}$ C时的值。

表 3.6 产品通信参数

项目	参数	指标
RS485	波特率	600bps~460800bps(出厂默认参数: 115200bps, 8, N, 1)
	通信距离	大于 1200 米
网口	数据速率	10/100M 自适应,MDI/MDIX 交叉直连自动切换
	支持协议	ETHERNET、TCP、UDP、IP、ARP、DHCP、DNS、ICMP

4. 硬件接口及机械尺寸

4.1 产品接口布局

4.1.1 ZQWL-IO-1BX1C16、ZQWL-IO-2BX1C16 接口布局

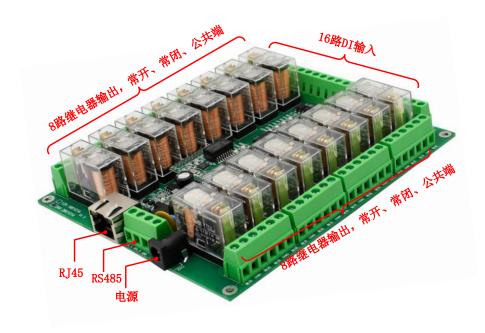


图 4.1 设备的接口布局 1

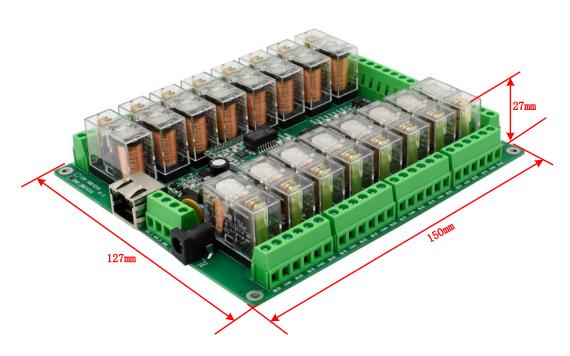
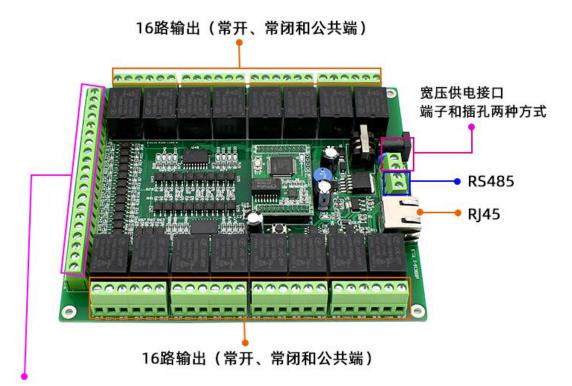



图 4.2 设备机械尺寸 1

4.1.2 ZQWL-IO-1BXRC16、ZQWL-IO-2BXRC16 接口布局

16路开关量输入 (兼容PNP、NPN、干湿节点等接线方式)

图 4.3 设备的接口布局 2

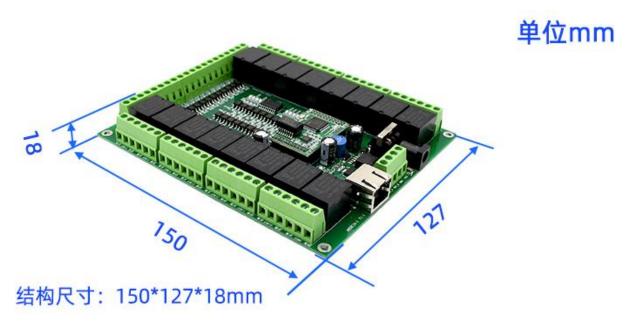


图 4.4 设备机械尺寸 2

4.1.3 ZQWL-IO-1CNRC16、ZQWL-IO-2CNRC16、ZQWL-IO-1CN1C16、ZQWL-IO-2CN1C16

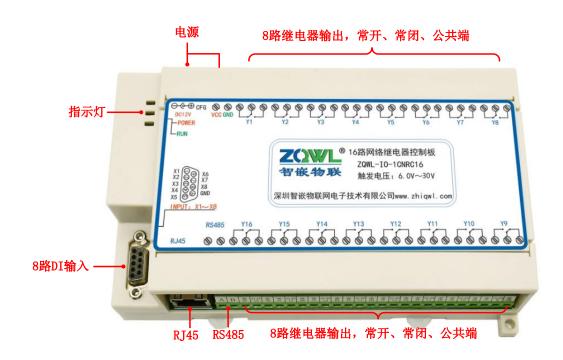


图 4.5 设备的接口布局 3

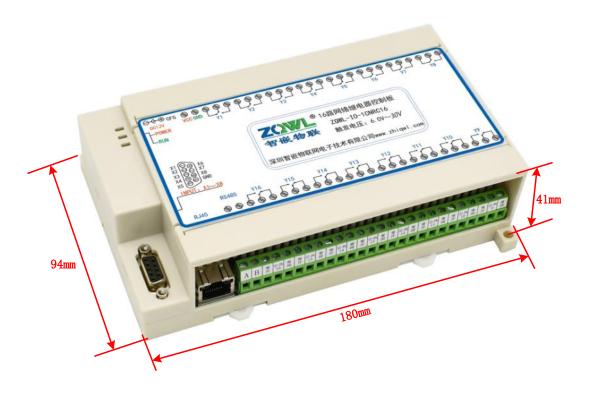


图 4.6 设备机械尺寸3

4.1.4 ZQWL-IO-1DXRC16、ZQWL-IO-1DX1C16、ZQWL-IO-2DXRC16、ZQWL-IO-2DX1C16

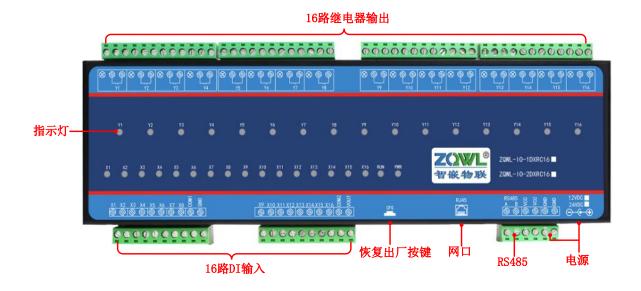


图 4.7 设备的接口布局 3

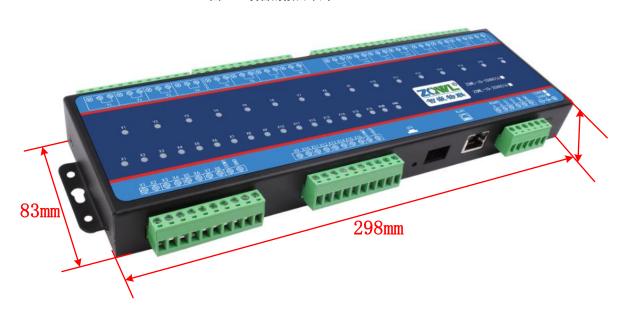


图 4.8 设备机械尺寸3

4.2 设备开关量输入

本控制板共有 16 个开关量输入,部分型号支持干节点、湿节点、NPN、PNP 的接线方法,部分型号的开关量输入只支持高电平有效,具体型号详见表 1.1 所示。

1. PNP 输入接线

PNP 型输入时,公共端"COM"为信号"地"(即共阴极,共负极),X1~X4输入高电平时,有信号,逻辑示意图如图 4.9 所示(以 X1 为例)。

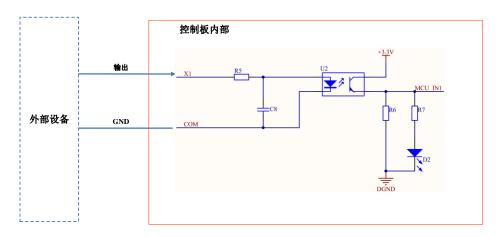


图 4.9 PNP 接线方式

例如, COM接GND上, X1接到VCC上,则第一路输入有信号。

2. NPN 输入接线

NPN 型输入时,公共端"COM"接 VCC(即共阳极,共正极),X1~X4输入低电平时,有信号,逻辑示意图如图 4.10 所示(以 X1 为例)。

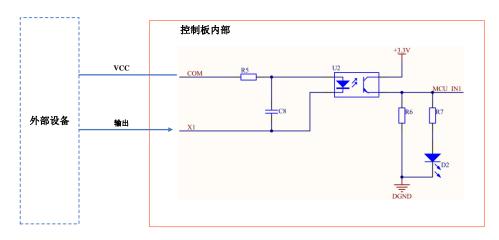


图 4.10 NPN 接线方式

例如, COM接 VCC上, X1接到GND上,则第一路输入有信号。

3. 干节点接线

若用户需要检测的是无源开关信号,可以使用干节点的接线方式。

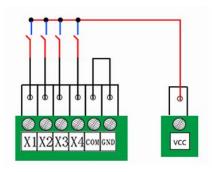


图 4.11 干节点接法

4. 湿节点接线方式

若用户需要检测有源的开关信号,可以采用湿节点的接线方式。

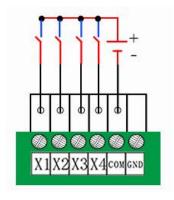


图 4.12 湿节点接法

4.3 设备继电器输出接线

该设备共有 16 路继电器输出,每路都有常开、常闭和公共端三个触点,每路继电器的公共端触点互相独立,16 路可以分别控制不同的电压,每个端子均有标示。接线图详见《智嵌物联 IO 控制器接线说明》。

4.4 指示灯

表 4.1 LED 状态指示

指示灯	设备正常时	
电源指示灯(PWR)	常亮	
运行指示灯(RUN)) 闪烁(频率约 1HZ)	
网口灯	黄灯常亮	
	绿灯闪烁	
X1~X16	DI 输入有信号时,亮	
	DI 无信号时,灭	
Y1~Y16	DO 继电器常开与公共端触点闭合,亮	
	DO 继电器常开与公共端触点断开,灭	

- ② ZQWL-IO-1CNRC16、ZQWL-IO-2CNRC16、ZQWL-IO-1CN1C16、ZQWL-IO-2CN1C16
- ↓ 这些型号没有 "X1~X16"、"Y1~Y16"指示灯。

5. 模块参数配置

本模块可以通过"智嵌串口服务器配置软件"以及网页的方式进行参数的配置。注意, 模块只有重启后,新设置的参数才生效。

5.1 智嵌网络 IO 配置软件

可以通过配置软件对模块的参数配置,可以配置的参数如下:模块 IP,子网掩码,网关, DNS 服务器, MAC 地址(也可以采用出厂默认), 1 路 RS485 的参数;也可以通过配置软件对模块进行固件升级。

使用方法如下:

- 1. 将模块通过网线和电脑或路由器连接,并给模块上电,SYS 灯闪烁(约 1Hz)表示模块启动正常。
- 2. 基本参数设置

图 5.1 配置软件

3. 点击上图中的"搜索设备",如果搜索成功,设备列表中:

图 5.2 搜索设备

说明:

IP 地址类型支持静态 IP 和动态 IP;

MAC 地址默认情况下由系统自行计算得到,保证每个模块不同(也可以由用户自行设定)。

波特率支持: 600~460800bps。

工作模式支持: TCP_SERVER, TCP_CLIENT, UDP_SERVER, UDP_CLIENT。

该模块支持 DNS 功能,可以在目标 IP/域名栏填写所要连接的域名网址。

用户名和密码是为网页配置登陆所用,默认用户名是 admin,密码是 admin,可以修改 (用户名只能用配置软件修改,密码既可用配置修改也可以用网页修改)。

RS485 地址:此处可设置设备本身的地址。

4. 保存参数,重启设备

每次修改参数,均须保存设置后,重启设备。

5.2 网页参数配置

网页配置提供中英文两个版本,如果要使用网页进行参数配置,首先要知道模块的 IP, 如果不慎忘记,可以拉按住"RESET"按钮,保持 5 秒以上,模块恢复出厂设置,此时模块的 IP 是: 192.168.1.253。

1. 系统登录

在浏览器中输入设备的 IP 地址(默认: 192.168.1.253),回车,则出现配置网页,需要认证用户名和密码(和配置软件中的一致),初始用户名为: admin,初始密码为: admin。

中文版如图 5.3 所示, 英文版如图 5.4 所示。

Copyright ② [2015] 深圳智敏物联网电子技术有限公司 All rights reserved

图 5.3 中文版系统登录

Copyright © [2015] SHENZHEN ZHIQIAN INTERNET OF THINGS CO.,Ltd All rights reserved

图 5.4 英文版系统登录

登陆成功后就可以对模块配置了。

2. IP 地址配置

点击网页左侧的"模块 IP 配置", 出现如图 5.5 所示。

Copyright ⑤ [2015] 深圳智敏物联网电子技术有限公司 All rights reserved

图 5.5 设备 IP 配置

在"IP 地址配置"页面中,可以配置模块地址、IP 信息、网页访问端口以及是否要使用自动获取 IP, 配置好后点击"提交",注意需要重启后新配置的参数才能生效。

3. USART 配置

点击网页左侧的"USART 配置",即 RS485参数。出现如图 5.6 所示。

Copyright © [2015] 深圳智敏物联网电子技术有限公司 All rights reserved

图 5.6 USART 配置

说明:

在"USART 配置"页面中,可以设置所需的 USART 参数:波特率、数据位、停止位以及校验位。

工作模式有 4 种: TCP_SERVER、TCP_CLIENT、UDP_SERVER、UDP_CLIENT。这 4 种模式只能任选 1 种。

当选择"TCP_SERVER"或"UDP_SERVER"模式后,"目标地址"和"目标端口"无意义。

当选择 TCP_CLIENT 或 UDP_CLIENT 后,"目标地址"和"目标端口"就是所要连接的目的设备地址。

注意当选用"Modbus TCP 转 RTU"功能时,工作模式必须选择"TCP SERVER";

"注册心跳包"含义: 当工作模式选 "TCP_CLIENT"模式时,如果"注册心跳包时间"不为 0,则当 TCP 连接无数据交换时,模块自动向 TCP 服务器发送"注册心跳包数据",发送时间间隔即为"注册心跳包时间";如果"注册心跳包时间"设置为 0,禁止心跳包功能。

4. 用同样的方法可以分别打开"密码管理"、"产品信息"、"重启设备"、"系统登录"等页面,逐一对模块配置。

6. 设备的高级功能

6.1 心跳包

6.1.1 心跳包

心跳包只能用在 TCP_CLIENT 模式下,用户可以根据需求设置心跳包数据和心跳包时间。 当心跳包间隔设置为 0 或不勾选"启用心跳包",心跳包功能不启用。

向服务器发送心跳包主要目的是为了保持连接稳定可靠,保证连接正常的同时还可以让服务器通过心跳包知道设备在线情况。用户可以选择让设备发送心跳包以实现特定的需求。

网络心跳包是在透传模式下,一个心跳时间内没有数据向网络发送的时候才会发送,如果数据交互小于心跳时间,则不会发送心跳包。

6.1.2 注册包

注册包只能用在 TCP_CLIENT 模式下,用户可以根据需求来设置注册包的发送方式和注册包数据,也可以不使用注册包功能。

注册包可以作为设备获取服务器功能的识别码,也可以作为数据包头,方便服务器识别数据来源。

设备支持三种注册包发送方式,如表 6.1 所示。

注册包发送方式	说明
与服务器建立连接时,向服务器发送一次	连接服务器成功后,发送注册包到服务器,并且只发送一次
向服务器发送的每个数据包前都加上	向服务器发送数据时,在数据前增加注册包后发送到服务器
同时支持以上两种	连接服务器成功后,发送注册包到服务器,同时在向服务器
	发送数据时,在数据前增加注册包后再发送到服务器端

表 6.1 注册包发送方式

6.2 设备级联控制

该模块有 1 路 RS485 接口和 1 个 RJ45 接口,内置了网络与 RS485 数据透传以及 Modbus TCP 转 RTU 功能(即串口服务器功能)。可通过 RS485 接口实现与智嵌 RS485 型 IO 设备的级联,至少可级联 32 个,其拓扑结构如图 6.1 所示。

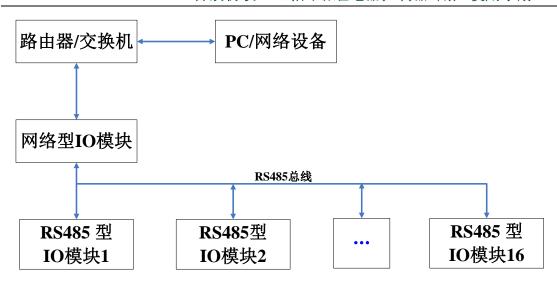


图 6.1 网络 IO 设备与 RS485 IO 设备级联

6.3 设备 DI 输入状态自动上报

当 DI 输入状态变化时,设备会将 DI 状态主动上报到服务器,设备默认不开启该功能,须通过配置软件使能"自动上报功能",如图 6.2 所示。保存设置后,须重启设备,参数方可生效。



图 6.2 使能自动上报

6.4 设备 DI 输入与 DO 输出联动

DI 输入联动 DO 输出功能: 当 DI 输入有信号时,对应的 DO 继电器会做出对应的动作。设备默认不开启该功能,须通过配置软件使能"关联到输出",如图 6.3 所示。保存设置后,须重启设备,参数方可生效。

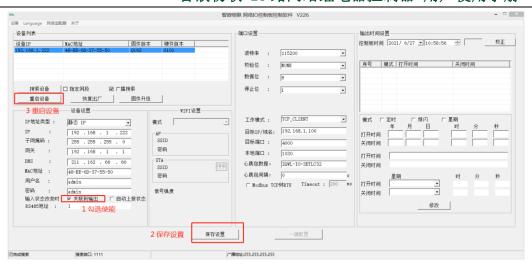


图 6.3 使能 DI 联动 DO 功能

6.5 设备与设备之间联动

两台设备之间通过简单的配置即可实现设备间联动,即设备 A 的 DI 输入信号可以控制设备 B 的 DO 继电器输出。

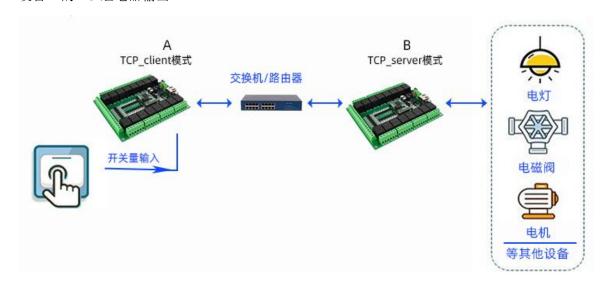


图 6.4 设备间联动

6.6 延时断开控制

设备收到延时断开指令后,将对应的 DO 继电器常开触点与公共端触点闭合,并会返回控制板继电器状态,然后开始计时,到达用户设置的延时时间之后之后,将设备会将对应的继电器常开触点与公共端触点断开。

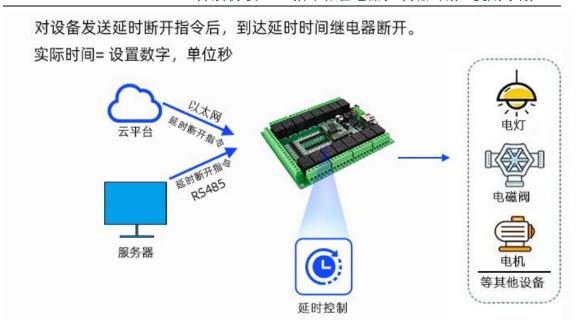


图 6.5 延时断开控制

6.7 定时控制

设备支持 8 个定时器,用户可设置具体的时间以及循环周期,当到达用户设置的时间后,设备的 DO 继电器输出就会按照用户设置好的动作执行。目前仅支持手机 APP 设置定时时间。该定时控制功能,仅云版本的网络设备支持,购买时请咨询客服。

图 6.6 定时控制

6.8 串口服务器功能

设备支持 RS485 接口数据与网络之间的数据透传:设备接收到数据之后,首先解析是否符合设备的控制协议,若符合控制协议,则按照指令控制设备做出相应的动作;若不符合控制协议,则数据透传,如图 6.7 所示。控制协议具体详见第 7 章介绍。

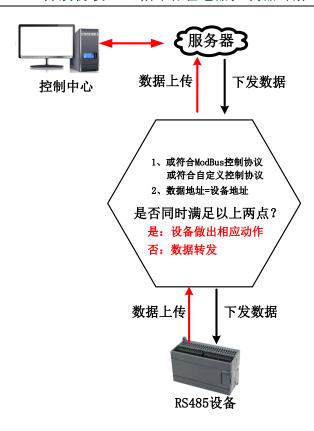


图 6.7 串口数据透传策略

7. 模块通讯协议

该设备支持三种协议: Modbus TCP、Modbus RTU 、ASCII 控制和自定义协议。

7.1 自定义协议

自定义协议采用固定帧长(每帧 15 字节),采用十六进制格式,并具有帧头帧尾标识,该协议适用于"ZQWL-IO"系列带外壳产品。

该协议为"一问一答"形式,主机询问,控制板应答,只要符合该协议规范,每问必答。 该协议指令可分为两类:控制指令和配置指令。

控制指令:控制继电器状态和读取开关量输入状态。

配置指令类:配置设备参数以及复位等。

7.1.1 控制指令

控制指令分为2种格式:一种是集中控制指令,一种是单路控制指令。

7.1.1.1 集中控制指令

此类指令帧长为 15 字节,可以实现对继电器的集中控制(一帧数据可以控制全部继电器状态)。详细集中控制指令如表 7.1 所示。

项目	帧乡	ŕ	地址	命令	DI/DO 状态	校验和	帧	尾
				码	8 字节数据			
字节数	Byte1	Byte2	Byte3	Byte4	Byte5~ Byte12	Byte13	Byte14	Byte15
读输入状态	0X48	0X3A	Addr	0X52	任意值	前 12 字节和(只取低 8 位)	0X45	0X44
应答"读输入状态"	0X48	0X3A	Addr	0X41	DATA1~DATA8	前 12 字节和(只取低 8 位)	0X45	0X44
写继电器状态	0X48	0X3A	Addr	0X57	DATA1~DATA8	前 12 字节和(只取低 8 位)	0X45	0X44
应答"写继电器状态"	0X48	0X3A	Addr	0X54	DATA1~DATA8	前 12 字节和(只取低 8 位)	0X45	0X44
读继电器状态	0X48	0X3A	Addr	0X53	任意值	前 12 字节和(只取低 8 位)	0X45	0X44
应答"读继电器状态"	0X48	0X3A	Addr	0X54	DATA1~DATA8	前 12 字节和(只取低 8 位)	0X45	0X44

表 7.1 ZQWL-IO 集中控制指令表

说明:

表中的"8字节数据" 即对应设备的 DI/DO 状态数据, 4个 bit 表示 1 路状态,每1个字节表示 2 路 DI/DO 状态:

字节	DATA 1	DATA 2	DATA 3	DATA 4	DATA 5	DATA 6	DATA 7	DATA 8
含义	第 1/2 路	第 3/4 路	第 5/6 路	第 7/8 路	第 9/10 路	第 11/12 路	第 13/14 路	第 15/16 路
	状态	状态	状态	状态	状态	状态	状态	状态

每个字节表示两路 DI/DO 状态: 低 4 位表示奇数路, 高 4 位表示偶数路, 例如 DATA1 为 0x10, 其含义是第 1 路断开, 第二路闭合; 例如 DATA2 为 0x01, 其含义是第 3 路闭合, 第 4 路断开。

控制码举例如下(十六进制):

1. 读取地址为1的控制板开关量输入状态:

发送: 48 3a 01 52 00 00 00 00 00 00 00 d5 45 44 //读取设备 DI 输入状态

应答: 48 3A 01 41 11 11 00 00 00 00 00 00 02 45 44 //应答,控制板的 X1、X2、X3、X4 输入有信号(高电平),其余 12 路无信号(低电平)。

2. 向地址为1的控制板写继电器状态:

发送: 48 3a 01 57 01 00 01 00 00 00 00 00 dc 45 44 //第 1 个和第 5 个继电器闭合; 其余继电器断开。

注意继电器板只识别 0 和 1,其他数据不做任何动作,所以如果不想让某一路动作,可以将该路赋为其他值。例如不让第 3 个和第 7 个继电器改变状态,可以发如下指令:

发送: 48 3a 01 57 01 02 01 02 00 00 00 00 e0 45 44

只需要将第2和第4路置为02(或其他值)即可。

控制板收到以上命令后,会返回控制板继电器状态,如:

应答: 48 3a 01 54 01 00 01 00 00 00 00 00 d9 45 44

7.1.1.2 单路控制指令

此类指令帧长为 10 字节,可以实现对单路继电器的控制(一帧数据只能控制一个继电器状态)。此类指令也可以实现继电器的延时断开功能。

详细指令如表 7.2 所示。

表 7.2 ZQWL-IO 单路控制指令表

项目	帧	头	地址	命令		4 字节数	居		帧尾	
			码	码						
字节	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10
写继电器状态	0X48	0X3A	Addr	0X70	继电器序号	继电器状态	时间 TH	时间 TL	0X45	0X44
应答"写继电器状态"	0X48	0X3A	Addr	0X71	继电器序号	继电器状态	时间 TH	时间 TL	0X45	0X44
读继电器状态	0X48	0X3A	Addr	0X72	继电器序号	继电器状态	时间 TH	时间TL	0X45	0X44
应答"读继电器状态"	0X48	0X3A	Addr	0X71	继电器序号	继电器状态	时间 TH	时间TL	0X45	0X44

说明:

Byte3 是控制板的地址,取值范围 0x00~0xfe,用户可以通过配置指令来设置地址码;

Byte5 是要操作的继电器序号,取值范围是 1 到 16(对应十六进制为 0x01 到 0x10);

Byte6 为要操作的继电器状态: 0x00 为常闭触点闭合常开触点断开, 0x01 为常闭触点断开常开触点闭合, 其他值为继电器保持原来状态;

Byte7 和 Byte8 为延时时间 T (收到 Byte6 为 0x01 时开始计时,延时结束后关闭该路继电器输出),延时单位为秒,Byte7 是时间高字节 TH,Byte8 是时间低字节 TL。例如延时 10 分钟后关闭继电器,则:

时间 T=10 分钟=600 秒, 换算成十六进制为 0x0258, 所以 TH=0x 02, TL=0x 58。

如果 Byte7 和 Byte8 都填 0x00,则不启用延时关闭功能(即继电器闭合后不会主动断 \overline{T})。

单路命令码举例(十六进制):

1. 将地址为1的控制板的第1路继电器打开:

发送: 48 3a 01 70 01 01 00 00 45 44 //设备收到该命令后,将第 1 路继电器常闭触点断开,常开触点闭合 应答: 48 3a 01 70 01 01 00 00 45 44 //应答第一路继电器状态

2. 将地址为1的控制板的第1个继电器关闭:

发送: 48 3a 01 70 01 00 00 00 45 44 //设备收到该命令后,将第 1 路继电器常闭触点闭合,常开触点断开应答: 48 3A 01 71 01 00 00 00 45 44 //应答第一路继电器状态

3. 将地址为1的控制板的第1路继电器打开延时10分钟后关闭:

发送: 48 3a 01 70 01 01 02 58 45 44

控制板收到以上命令后,将第1路的继电器常闭触点断开,常开触点闭合,并会返回控制板继电器状态,然后开始计时,10分钟之后将第一路的继电器常闭触点闭合,常开断开。

4. 将地址为1的控制板的第1路继电器打开延时5秒后关闭:

发送: 48 3a 01 70 01 01 00 05 45 44

控制板收到以上命令后,将第1路的继电器常闭触点断开,常开触点闭合,并会返回控制板继电器状态,然后开始计时,5秒之后将第一路的继电器常闭触点闭合,常开断开。

7.1.2 配置指令

当地址码为 0xff 时为广播地址,只有"读控制板参数"命令使用广播地址,其他都不能使用。

表 7.3 ZQWL-IO 配置指令表

	帧头	ς	地址码	命令	8 字节数据	校验和	帧	尾
				码				
读控制板参数	0X48	0X3A	0XFF 或	0x60	任意	前12字节和(只取低8位)	0X45	0X44
			Addr					
应答"读控制板参数"	0X48	0X3A	Addr	0x61	参考	前12字节和(只取低8位)	0X45	0X44
					表 7.4			
修改波特率	0X48	0X3A	Addr	0x62	参考表 7.5	前12字节和(只取低8位)	0X45	0X44
应答"修改波特率"	0X48	0X3A	Addr	0x63	任意	前12字节和(只取低8位)	0X45	0X44
修改地址码	0X48	0X3A	Addr	0x64	参考表 7.6	前12字节和(只取低8位)	0X45	0X44
应答"修改后地址码"	0X48	0X3A	Addr	0x65	任意	前12字节和(只取低8位)	0X45	0X44
读取版本号	0X48	0X3A	Addr	0x66	任意	前12字节和(只取低8位)	0X45	0X44
应答"读取版本号"	0X48	0X3A	Addr	0x67	参考表 7.7	前12字节和(只取低8位)	0X45	0X44
恢复出厂	0X48	0X3A	Addr	0x68	任意	前12字节和(只取低8位)	0X45	0X44
应答"恢复出厂"	0X48	0X3A	Addr	0x69	任意	前12字节和(只取低8位)	0X45	0X44
复位	0X48	0X3A	Addr	0x6A	任意	前12字节和(只取低8位)	0X45	0X44
应答"复位"	0X48	0X3A	Addr	0x6B	任意	前 12 字节和(只取低 8 位)	0X45	0X44

表 7.4 控制板参数表

	控制板地址	波特率	数据位	校验位	停止位	未用	未用	未用
字节	DATA 1	DATA 2	DATA 3	DATA 4	DATA 5	DATA 6	DATA 7	DATA 8
		0x01:1200						
		0x02:2400						
		0x03:4800						
		0x04:9600						
		0x05:14400						
		0x06:19200						
		0x07:38400	0x07:7	0x4e: N,不校验	1:1bit			
		0x08:56000	0x08:8	0x45: E,偶校验	2:1.5bit	未用	未用	未用
含义	Addr	0x09:57600	0x09:9	0x44: D,奇校验	3:2bit			
		0x0A:115200						
		0x0B:128000						
		0x0C:230400						
		0x0D:256000						
		0x0E:460800						
		0x0F:921600						
		0x10:1024000						

表 7.5 修改波特率表

字节	DATA 1	DATA 2	DATA 3	DATA 4	DATA 5	DATA 6	DATA 7	DATA 8
含义	修改后波特率	数据位	校验位	停止位	未用	未用	未用	未用
	含义见	含义见	含义见					
		表 7.4						
	表 7.4		表 7.4					

表 7.6 修改地址表

字节	DATA 1	DATA 2	DATA 3	DATA 4	DATA 5	DATA 6	DATA 7	DATA 8
含义	修改后地址	未用						

表 7.7 读取版本号表

字节	DATA 1	DATA 2	DATA 3	DATA 4	DATA 5	DATA 6	DATA 7	DATA 8
含义	Ή'	' 0'	·-'	'0'	'4'	·_'	'0'	'0'

版本号为 ascii 字符格式,如"IO-04-00",IO 表示产品类型为 IO 控制板; 04 表示 4 路系列; 00 表示固件版本号。

7.2 ASCII 控制协议

通过 ASCII 格式协议,用户可设置 16 路 DO 输出状态,设置 DO 继电器延时断开时间, 读取 DI 状态、DO 状态、脉冲计数值、AI 模拟量值。

7.2.1 设置 DO 继电器输出状态

设置 16 路 DO 继电器状态帧(主机):

帧头	设备地址	命令码	第 1 路 DO	 	第16路DO	帧尾
zq	0~255	set	0: 断开	 	0: 断开	qz
	其中 255 是广		1: 闭合		1: 闭合	
	播地址		2: 翻转		2: 翻转	
			3: 不动作		3: 不动作	

应答帧:

帧头	设备地址	命令码	第1路	 	第8路	帧
			DO		DO	尾
zq	0~255	ret	0: 断开	 	0: 断开	qz
	其中 255 是广		1: 闭合		1: 闭合	
	播地址					

例如:

发送: zq1set111111111111111111qz

//设置前 16 路 DO 继电器常开与公共端触点闭合

接收: zq1ret111111111111111111 / / 返回 16 路继电器状态

⇒ 地址 255 是广播地址。

7.2.2 设置单路 DO 继电器状态

设置单路 DO 继电器状态:

帧头	设备	命令码	哪一路 DO 延	DO 状态	帧尾
	地址		时断开		
zq	0~255	set	y01~y16	0: 断开	qz
				1: 闭合	
				2: 翻转	
				3: 不动作	

应答帧:

帧头	设备地 址	命令码	哪一路 DO 延 时断开	DO 状态	帧尾
zq	0~255	ret	y01~y16	1: 闭合	qz
				0: 断开	

例如:

发送: zq 1 set y02 1 qz //控制第 2 路继电器闭合

应答: zq 1 ret y02 1 qz

7.2.3 设置 DO 继电器延时断开时间

从 DO 继电器常开触点闭合开始计时,设置的延时时间到后,DO 继电器常开触点断开。延时时间范围 0~2147483647 毫秒。

设置单路 DO 继电器延时断开:

帧头	设备	命令码	哪一路 DO 延	DO 状态	延时断开时间	帧尾
	地址		时断开		(ms)	
zq	0~255	set	y01~y16	0: 断开	0~2147483647	qz
				1: 闭合		
				2: 翻转		
				3: 不动作		

应答帧:

帧头	设备地址	命令码	哪一路 DO 延 时断开	DO 状态	延时断开时间 (ms)	帧尾
zq	0~255	ret	y01~y16	1: 闭合	0~2147483647	qz
				0: 断开		

例如:

发送: zq 1 set y02 1 5000 qz //控制第 2 路继电器闭合 5 秒后断开

应答: zq 1 ret y02 1 5000 qz

获取 DO 继电器还剩多长时间断开指令:

帧头	设备	命令码	哪一路 DO 延	帧尾
	地址		时断开	
zq	0~255	get	y01~y16	qz

应答帧:

帧头	设备地	命令码	哪一路 DO	DO 状态	延时断开时间	帧尾
	址		延时断开		(ms)	
zq	0~255	ret	y01~y16	1: 闭合	0~2147483647	qz
				0: 断开		

例如:

发送: zq 1 get y02 qz //读取第 2 路 DO 继电器状态

应答: zq 1 ret y02 1 5000 qz //返回第 2 路继电器状态及还剩多长时间断开。

🕨 地址 255 是广播地址

7.2.4 只读取 DI 状态

查询设备 DI 状态帧:

更稳定

智嵌物联 16 路网络继电器控制器 用户使用手册

帧头	设备地址	命令码	DI 输入状态	帧尾
zq	0~255	get	х	qz

应答帧:

帧头	设备地址	命令码	16 路 DI 输入状态	帧尾
zq	0~255	ret	x:x1 ~x16	qz
			0: DI 输入无有效信号	
			1: DI 输入有有效信号	

例如:

发送: zq 1 get x qz

//读取所有 DI 状态

应答: zq1ret x:0000000000000qz //返回 DI 状态

7.2.5 只读 DO 继电器状态

查询设备 DO 状态帧:

帧头	设备地址	命令码	DO 输出状态	帧尾
zq	0~255	get	У	qz

应答帧:

帧头	设备地址	命令码	8 路 DO 输出状态	帧尾
zq	0~255	ret	y:y1~y16	qz
			0: DO 继电器断开	
			1: DO 继电器闭合	

例如:

发送: zq 1 get y qz

//读取所有 DO 继电器状态

应答: zq1rety:00000000000000qz //返回DO继电器状态

7.2.6 DI 的脉冲计数值清零

某一路脉冲计数值清零帧:

帧	头	设备地址	命令码	脉冲计数值	帧尾
Z	q	0~255	set	count1~count8	qz

应答帧:

帧头	设备地址	命令码	8 路 DI 脉冲计数值	帧尾
zq	0~255	ret	count:	qz

例如:

发送: zq 1 set count2 qz

//第2路脉冲计数清零

应答: zq 1 ret count2: qz //第二路脉冲计数清零应答

所有路脉冲计数值清零帧:

帧头	设备地址	命令码	脉冲计数值	帧尾
zq	0~255	set	count0	qz

应答帧:

帧头	设备地址	命令码	8 路 DI 脉冲计数值	帧尾
zq	0~255	ret	count:	qz

例如:

发送: zq 1 set count0 qz //所有路脉冲计数清零

应答: zq 1 ret count0 qz //所有路脉冲计数清零应答

7.2.7 只读 DI 的脉冲计数值

查询设备脉冲计数值帧:

帧头	设备地址	命令码	脉冲计数值	帧尾
zq	0~255	get	count	qz

应答帧:

帧头	设备地址	命令码	16路 DI 脉冲计数值	帧尾
zq	0~255	ret	count:0 0 0 0 0 0 0 0	qz
			0000000	

例如:

发送: zq 1 get count qz //读取脉冲计数值

7.3 Modbus rtu 协议

本控制板实现部分必要的 modbus rtu 协议,通讯格式如下:

Addr	Cmd	Data(n 字节)	Crc (2 字节)
/ Iddi	Cilia	Data (II) 147	CIC (2 1 14)

Addr 为 0xff 时,是广播地址,所有从机都能接收并处理,必要时要做出回应。广播地址可以用于对控制板的编址以及获取控制板的地址。

控制板实现的功能码如表 7.8 所示。

表 7.8 设备支持的功能码

Cmd	含义	备注		
0x01	读线圈	Data: 2 字节起始地址+2 字节线圈个数,线圈个数不能超过 4		
0x02 读离散量输入 Data: 2		Data: 2 字节起始地址+2 字节输入点个数,输入点个数不能超过 4		
0x03	读寄存器	Data: 2 字节起始地址+2 字节寄存器个数(寄存器含义见表 6.2.1)		
0x05	写单个线圈	Data: 2 字节起始地址+2 字节线圈值		
0x06	写单个寄存器	Data: 2 字节起始地址+2 字节寄存器值		
0x0f	写多个线圈	Data: 2 字节起始地址+2 字节线圈个数+1 字节个数+数值		

表 7.9 保持寄存器地址以及含义

偏移地址	名称	数据含义	属性
0X0000	控制板地址	取值范围: 0X0000~0X00FF	R/W
0X 0001	波特率	实际波特率除以 100, 比如 12 代表 1200, 96 代	R/W
		表 9600,1152 代表 115200,10240 代表 1024000	
0X 0002	数据位	仅支持 0X0007,0X0008,0X0009 三种	R/W
0X 0003	校验位	0X004E: 不校验;	R/W
		0X0045: 偶校验;	
		0X004F: 奇校验	
0X 0004	停止位	0X0001: 1bit	R/W
		0X0002: 1.5bit	
		0X0003 : 2bit	
0X 0005~	版本号	ASCII 表示,比如"IO-04-00": IO 表示产品类型	R
0X 000c		为 IO 控制板;04 表示 4 路系列;00 表示固件版	
		本号	
0X 000d	恢复出厂	读无意义; 当写 0X0001 时,控制板恢复出厂设	W
		置,写其他值无意义。	
0X 000e	复位	读无意义; 当写 0X0001 时,控制板复位,写其	W
		他值无意义。	
2、DI/DO 状	态起始地址 0x1000	(4096)	
偏移地址	名称	数据含义	属性
0x00	第1路DI状态	0x0000: 无信号; 0x0001: 有信号	R
		其他值无意义。	
0x01	第2路DI状态		R
•••			
0x3F	第 64 路 DI 状态		R
0x40 (4160)	第1路 DO 状态	0x0000: 断开; 0x0001: 闭合	R/W
		0x0002:反转	
0x41	第 2 路 DO 状态		R/W
0x7F	第 64 路 DO 状态		R/W
0x1F	第 16 路 AO		W
3、DI 脉冲计	数起始地址 0x10A0	(4256)	
偏移地址	名称	数据含义	属性
0x00	第1路脉冲计数	共计 4 字节,高位在前,低位在后	R/W
0x01			

0x02	第2路脉冲计数	共计4字节,高位在前,低位在后	R/W
0x03			
•••			
0X7E	第 64 路脉冲计数	共计4字节,高位在前,低位在后	R/W
0X7F			
4、DO 延时i	通断起始地址 0x11A0	(4512)	
偏移地址	名称	数据含义	属性
0x00	第1路 DO 延时通断	0x0000: 断开,不带延时; 0x0001: 闭	R/W
		合,延时后断开	
0x01		共计4字节,高位在前,低位在后;单	R/W
0x02		位 ms	
0x03	第 2 路 DO 延时通断	0x0000: 断开,不带延时; 0x0001: 闭	R/W
		合,延时后断开	
0x04		共计4字节,高位在前,低位在后;单	R/W
0x05		位 ms	R/W
0xDD	第64路DO延时通断	0x0000: 断开,不带延时; 0x0001: 闭	R/W
		合,延时后断开	
0xDE		共计4字节,高位在前,低位在后;单	R/W
0xDF		位 ms	R/W

注意:使用协议修改控制板参数时(波特率、地址),如果不慎操作错误而导致无法通讯时,可以按住"RESET"按键并保持 5 秒,等到"SYS"指示灯快闪时(10Hz 左右),松开按键,此时控制板恢复出厂参数,如下:

串口参数: 波特率 115200; 数据位 8; 不校验; 1 位停止位;

网络 IP:192.168.1253

控制板地址: 1。

7.4 Modbus rtu 指令码举例

以地址码 addr 为 0x01 为例说明。

1) 读线圈 (功能码: 0x01)

该指令是读取继电器装态,为方便和高效,建议一次读取所有继电器的状态。 外部设备请求帧:

Addr	功能码	起始地址	起始地址	线圈数量	线圈数量	CRC16	CRC16
(ID)		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X01	0X00	0X00	0X00	0X10	计算	获得

控制板响应帧:

Addr	功能码	字节数	线圈状态	线圈状态	CRC16	CRC16
(ID)			(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X01	0X02	B15~B8	B7~B0	计算	算获得

其中线圈状态(低字节)释义如下:

B7	В6	B5	B4	В3	B2	B1	В0
线圈 16	线圈 15	线圈 14	线圈 13	线圈 12	线圈 11	线圈 10	线圈 9

其中线圈状态(高字节)释义如下:

B15	B14	B13	B12	B11	B10	B9	B8
线圈8	线圈 7	线圈 6	线圈 5	线圈 4	线圈 3	线圈 2	线圈 1

说明:

B0~B15 分别代表控制板 16 个继电器状态(Y1~Y16)。

- 1代表继电器常开触点闭合,常闭触点断开。
- 0代表继电器常开触点断开,常闭触点闭合。

2) 读离散量输入(功能码: 0x02)

该指令是读取设备的开关量输入状态,为方便和高效,建议一次读取所有输入量的状态。外部设备请求帧:

F	Addr	功能	起始地址	起始地址	输入数量	输入数量	CRC16	CRC16
((ID)	码	(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
C	0X01	0X02	0X00	0X00	0X00	0X10	计算获得	

控制板响应帧:

Addr	功能码	字节	输入状态	输入状态	CRC16	CRC16
(ID)		数	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X02	0X02	B15~B8	B7~B0	计算	获得

其中输入状态(低字节)释义如下:

	B7	B6	B5	B4	В3	B2	B1	В0
Ī	输入8	输入 7	输入 6	输入 5	输入4	输入3	输入 2	输入1

其中线圈状态(高字节)释义如下:

B15	B14	B13	B12	B11	B10	B9	B8
输入 16	输入 15	输入 14	输入 13	输入 12	输入 11	输入 10	输入 9

说明:

B0~B15 分别代表控制板 16 个开关量输入状态(X1~X16)。

- 1代表输入接口存在有效信号。
- 0代表输入无有效信号。
- 3) 读寄存器(功能码: 0x03)

寄存器地址从 0x0000 到 0x000e, 一共 15 个寄存器。其含义参见

表 7.9 所示。

外部设备请求帧:

Addr	功能	起始地址	起始地址	寄存器数量	寄存器数量	CRC16	CRC16
(ID)	码	(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X03	0X00	0X00	0X00	0x0e	计算	获得

控制板响应帧:

Addr	功能	字节	数据 1	数据1	 数据 30	数据 30	CRC16	CRC16
(ID)	码	数	(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X03	0X1E	XX	XX	 XX	XX	计算	获得

4) 写单个线圈(功能码: 0x05)

该功能码用来设置单路继电器的状态。

外部设备请求帧:

	Addr	功能码	起始地址	起始地址	线圈状态	线圈状态	CRC16	CRC16
	(ID)		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
ĺ	0X01	0X05	0X00	XX	XX	0X00	计算	获得

注意: 起始地址(低字节)取值范围是 0X00~0X0F 分别对应控制板的 16 个继电器 (Y1~Y16);

线圈状态(高字节)为0XFF时,对应的继电器常开触点闭合,常闭触点断开;

线圈状态(高字节)为0X00时,对应的继电器常开触点断开,常闭触点闭合。

线圈状态(高字节)为其他值时,继电器状态保持不变。

控制板响应帧:

Addr	功能码	起始地址	起始地址	线圈状态	线圈状态	CRC16	CRC16
(ID)		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X05	0X00	XX	XX	0X00	计算	获得

5) 写单个寄存器(功能码: 0x06)

用此功能码既可以配置控制板的地址、波特率等参数,也可以复位控制板和恢复出厂设置。

注意:使用协议修改控制板参数时(波特率、地址),如果不慎操作错误而导致无法通讯时,可以按住"RESET"按键并保持 5 秒,等到"SYS"指示灯快闪时(10Hz 左右),松开按键,此时控制板恢复出厂参数,如下:

串口参数: 波特率 115200; 数据位 8; 不校验; 1 位停止位;

控制板地址: 1。

外部设备请求帧:

Addr	功能	起始地址	起始地址	寄存器数据	寄存器数据	CRC16	CRC16
(ID)	码	(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X06	0X00	XX	XX	XX	计算	获得

控制板响应帧:

A	Addr	功能	起始地址	起始地址	寄存器数据	寄存器数据	CRC16	CRC16
((D)	码	(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0)X01	0X06 0X00		XX	XX	XX	计算	获得

6) 写多个线圈(功能码: 0x0f)

该指令是同时设置多个继电器的状态,建议一次写入所有线圈状态。

外部设备请求帧:

Addr	功能	起始地址	起始地址	线圈数量	线圈数量	字节	线圈状态	线圈状态	CRC16	CRC16
(ID)	码	(高字节)	(低字节)	(高字节)	(低字节)	数	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X0F	0X00	XX	0X00	0X10	0X02	B15~B8	B7~B0	计算	获得

其中线圈状态(低字节)释义如下:

B7	B6	B5	B4	B3	B2	B1	B0
线圈 16	线圈 15	线圈 14	线圈 13	线圈 12	线圈 11	线圈 10	线圈 9

其中线圈状态(高字节)释义如下:

B15	B14	B13	B12	B11	B10	B9	B8
线圈8	线圈 7	线圈 6	线圈 5	线圈 4	线圈 3	线圈 2	线圈 1

说明:

B0~B15 分别对应控制板的 16 个继电器 Y1~Y6。

- 1代表继电器常开触点闭合,常闭触点断开。
- 0代表继电器常开触点断开,常闭触点闭合。

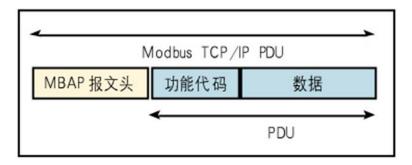
控制板响应帧:

	Addr	功能	起始地址	起始地址	线圈数量	线圈数量	CRC16	CRC16
	(ID)	码	(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
ĺ	0X01	0X0F	0X00	XX	0X00	0X10	计算	获得

7) 写寄存器 (功能码: 0x10)

该指令可设置 DO 状态、DO 继电器延时断开时间、DI 脉冲计数值等。

寄存器地址从 0x0000 到 0x11DF。其含义参见


表 7.9 所示。

外部设备请求帧:

I	Addr	功能	起始地	起始地	寄存器	寄存器	数	数据	CRC16	CRC16
	(ID)	码	址	址(低	数量	数量	据		(高字节)	(低字节)
			(高字	字节)	(高字	(低字	个			
			节)		节)	节)	数			
	0X01	0X10	0X10	0X40	0X00	0x01	XX	XX	计算	算获得

7.5 Modbus TCP 协议

Modbus TCP 数据帧包含报文头、功能代码和数据 3 部分(功能码和数据与 RTU 相同):

(1) MBAP 报文头(MBAP、Modbus Application Protocol、Modbus 应用协议)分 4 个域,共7个字节,如下表所示:

域	长度(B)	描述	客户端	服务器端	
传输标志	2	标志某个 Modbus 询问 / 应答的传输	由客户端生成	应答时复制该值	
协议标志	2	0=Modbus 协议 1=UNI-TE 协议	由客户端生成	应答时复制该值	
长度	2	后续字节计数	由客户端生成	应答时由服务器 端重新生成	
单元标志	1	定义连续于 目的其他设备	由客户端生成	应答时复制该值	

单元标志即为控制板的地址。

- (2) Modbus TCP 功能代码 本控制板实现必要的功能码,参考 Modbus RTU 的功能码。
- (3) Modbus TCP 数据 即为 Modbus RTU 的数据域。

8. 恢复出厂设置以及固件升级

8.1 恢复出厂设置

控制板有"RESET"按钮,可以用此复位控制板和恢复出厂设置,如图 8.1 所示。

图 8.1 按键

按下"RESET"按键在松开(注意下时间要小于5秒),控制板复位。

按住 "RESET" 按键并保持 5 秒以上,等到 "SYS" 指示灯快闪时(10Hz 左右),松开按键,此时控制板恢复出厂参数,如下:

串口参数: 波特率 115200; 数据位 8; 不校验; 1 位停止位;

网络参数: IP 为 192.168.1.253

控制板地址: 1。

8.2 模块固件升级

注意,需要升级固件时,先与厂商联系以获取新的固件,按照图 8.2 中所示步骤进行固件升级。



图 8.2 固件升级

9. 应用案例

9.1 网络 IO 控制器接入智嵌云控演示

智嵌物联的网络 IO 控制器(云版本)支持接入智嵌云,实现设备的远程控制与检测。本文档以智嵌的 4 路网络 IO 控制器为例,介绍设备接入智嵌云的方法,以及实现网页控制及手机 APP 控制的方法。

1. 硬件连接

用交换机将 IO 控制器设备、路由器、电脑通过网线连接起来,如图 9.1 所示,用电源适配器为设备供电。供电后请先观察设备指示灯是否正常,如表 9.1 所示。

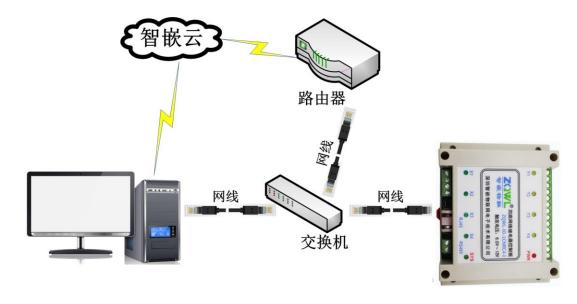


图 9.1 硬件连接

表 9.1 设备指示灯意义

指示灯	设备正常时		
电源指示灯(PWR)	常亮		
运行指示灯(RUN)	闪烁(频率约 1HZ)		
网口灯	一个灯常亮,一个灯有数据时		
	会闪烁		

2. 登录智嵌云平台账号

浏览器进入智嵌云管理平台,网址: www.zqwliot.com, 选择智嵌云控的新版本界面,如图 9.2 所示。进入登录界面,注册并登录智嵌云平台账号,若已注册,直接登录即可,如图 9.3 所示。

图 9.2 智嵌云管理平台

图 9.3 智嵌云登录界面

3. 创建项目

智嵌云平台是通过项目的方式来管理设备的,因此在用户添加设备之前要先创建一个项 目及分组,如图 9.4 所示。

图 9.4 智嵌云平台创建项目步骤

4. 添加设备

此步骤的目的是在用户的账号下添加该设备,此步完成后,系统会自动生成 SN 号,该 SN 号会在绑定设备时用到。

在已创建的项目分组下添加继电器控制板设备,具体步骤如图 9.5 所示。

图 9.5 智嵌云平台添加设备步骤

设备添加完成后,在设备列表菜单下找到刚添加的设备,复制设备 SN 及通讯密码,后面备用。

图 9.6 添加设备完成

配置设备参数

此步骤的目的是将网络设备与智嵌云平台建立连接。

打开"网络 IO 控制板配置软件",按图 9.7 所示步骤进行配置。

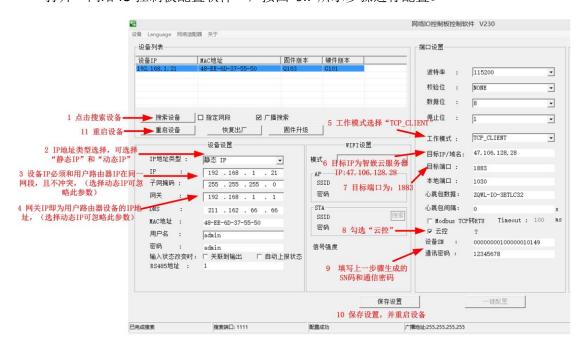


图 9.7 设备参数配置

- 保存参数并重启设备、参数方可生效。
- IP 地址类型选择"动态 IP"时,图 9.7 中的第3、4 步可不设置。

6. 网页控制

以上步骤完成后,设备已经接入到智嵌云上,如图 9.8 所示,设备已在线,此时可以通 过网页或 APP 控制设备。

图 9.8 设备在线

点击"进入",可跳转到设备的控制界面,如图 9.9、图 9.10 所示。鼠标点击每一路 继电器的"开"、"关"、"翻转",继电器会做出相应的动作。点击"刷新状态",可实 时获取设备的开关量输入状态。

图 9.9 设备控制界面

图 9.10 设备开关量输入检测界面

7. 手机 APP 控制

下载"智嵌云控"APP。用手机浏览器扫面以下二维码下载 APP 安装包。

图 9.11 "智嵌云控" APP 下载二维码

打开"智嵌云控"APP,进入登录界面(第一次使用需先注册智嵌云平台账号)。如图 所示。

単 若已通过网页方式注册账号, 无需再注册, 可以直接登录。



图 12 "智嵌云控" APP 登录界面

图 13 已添加的 IO test 设备

登录后,就可以看到之前添加的设备"IO test"了,如图 12 所示。 下面就可以对 IO 控制器进行远程控制了。如图 14、图 15、图 16 所示。

图 14 远程控制继电器输出

图 15 远程检测开关量输入状态

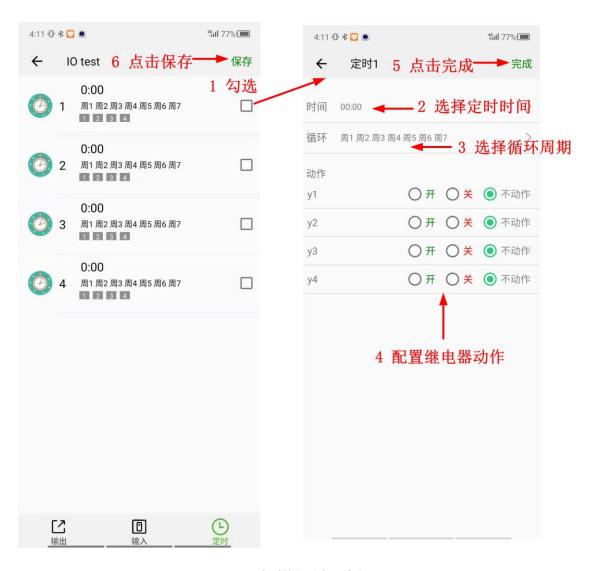
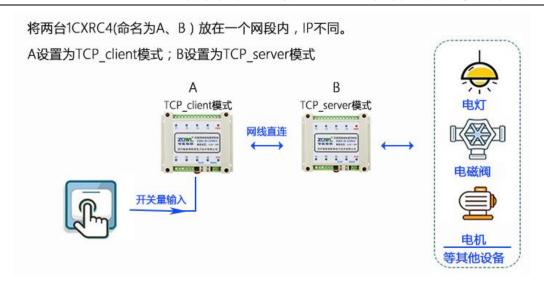



图 16 定时控制继电器输出

当设备的数字量输入接口上有有效信号时,用户可通过刷新手机输入信号界面,查看输入信号状态(当用户开启设备的自动上报功能后,可不用手动刷新)

9.2 网络 IO 控制器设备间一对一联动控制配置方法

智嵌物联的 IO 控制器可以实现一对一联动控制的功能,即一台设备的开关量输入联动另外一台设备的继电器输出,从而实现远程报警的功能。

8. 硬件接线

▶ 智嵌物联网络 IO 控制器通过交换机连接

此种模式特点是,网络 IO 控制器都接到由交换机组成的局域网内(在一个网段内),用现有的网络布线取代原来的串口布线。网络拓扑如图 9.12 所示。

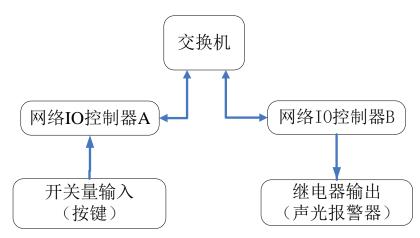


图 9.12 成对连接使用拓扑 1

▶ 网络 IO 控制器通过网线直接相连

此种模式特点是,两个网路 IO 控制器直接用网线相连,网络拓扑如图 9.13 所示

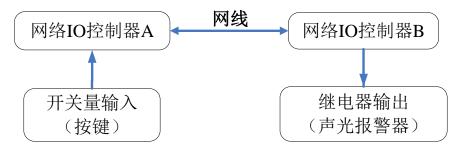


图 9.13 成对连接使用拓扑 2

9. 成对连接模式的具体使用步骤

为方便说明,现将网络 IO 控制器 A 记为 A 模块; 网络 IO 控制器 B 记为 B 模块。以下说明如何将 A 模块的开关量输入(X1)联动 B 模块的继电器输出(Y1)。

10. 设置 A 模块的工作模式为 TCP SERVER 模式

将 A 模块上电,接上网线,并保证与电脑处在一个局域网内。用网络 IO 控制器配置软件搜索软件搜到该设备,并根据实际情况做如图 9.14 所示设置:

图 9.14 A 模块参数配置

由图 9.14 可以看出,A 模块工作在 TCP_SERVER 模式下,目标 IP 和目标端口无意义;本地端口为 1030,该值可以适当填写;IP 为 192.168.1.253,子网掩码为 255.255.255.0。此参数即为出厂参数 。

11. 设置 B 模块的工作模式为 TCP CLIENT 模式

将 B 模块上电并接上网线,并保证与电脑处在一个局域网内。用网络 IO 控制器配置软件搜到该模块,并根据实际情况做如图 9.15 所示设置:

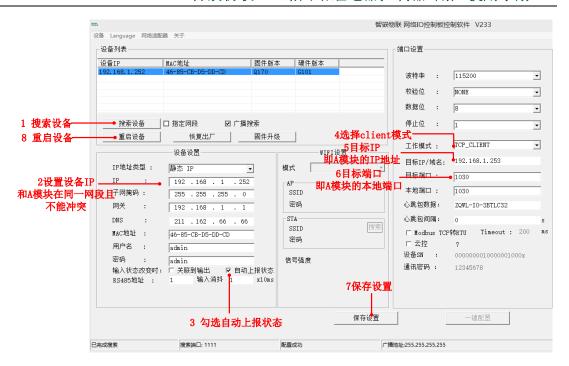


图 9.15 B 模块参数配置

注意:

B 模块一定要工作在 TCP_CLIENT 模式; B 模块的 IP 要和 A 模块在一个网段内并不能相同,比如设置为上图的 192.168.1.252; B 模块的目标 IP 填 A 模块的 IP(192.168.1.253); B 模块的目标端口填 A 模块本地端口(1030)。

↓ 设备保存参数后,须重启设备,参数方可生效。

经过以上步骤后,当 A 模块的开关量输入(X1)有有效信号时, B 模块的相应继电器常开和公共端触点就会闭合;当 A 模块的开关量输入(X1)无有效信号时, B 模块的相应继电器常开和公共端触点就会断开。

常见故障处理

1. 搜索不到设备

使用"智嵌串口网络 IO 配置软件"搜不到设备时,请检查:

◆ 检查指示灯是否正常

指示灯	设备正常时	异常时	
电源指示灯(PWR)	常亮	检查电源适配器是否正常	
运行指示灯(RUN)	闪烁(频率约 1HZ)	检查电源适配器是否正常	
网口灯	一个灯常亮,一个灯有数据时	检查网线连接	
	会闪烁		
串口数据指示灯(PORT1~24)	串口有数据时会闪烁或常亮	检查串口连接	

◆ 配置软件的"网络适配器"是否选对:

当电脑有多个网卡时,需要选择与串口服务器通讯的网卡进行搜索:

2. 能搜到设备但通信失败

检查设备参数是否配置正确(IP、工作模式、波特率等参数)。

◆ 设备 IP 是否正确

一般情况下需要设备和电脑在一个网段内,注意配置软件能搜到不一定说明就在一个段内。

◆ 串口参数是否正确

串口服务器的串口参数必须与所连串口设备参数一致才能通讯,如波特率,数据位,检验位,停止位。

◆ 端口的工作模式

设备每个端口都有4种工作模式,用户要根据自己的网络环境确定所使用的工作模式。

◆ 透传与 Modbus TCP 是否选对

当不勾选"Modbus TCP转 RTU"时,设备为透明转换功能,即网络收到什么数据,相应的串口就会发出什么数据(串口到网络也是如此);当勾选"Modbus TCP转 RTU",设备为协议转换,网络和串口的数据必须符合该协议才能通讯正常。

◆ 参数修改后是否重启

当设备参数修改后,需要重启才能生效。

销售网络

智嵌物联,让连接更稳定!

企业愿景:成为国内物联网设备首选品牌!

企业使命: 为客户利益而努力创新,为推动工业物联网发展而不懈奋斗!

产品理念: 稳定! 稳定! 还是稳定!

服务理念: 客户在哪里, 我们就在哪里!

深圳总部

地址:广东省深圳市宝安区新桥街道新桥社区

新和大道 6-18 号 1203

网址: www.zhiqwl.com 电话: 0755-23203231

北京办事处

地址:北京市房山城区德润街6号院8号楼3层

电话: 18210365439

更多销售网络正在紧张筹备中……

天猫店铺

淘宝店铺

京东店铺

微信公众号

公司官网