

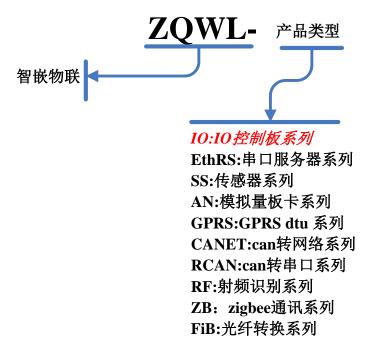
智嵌 ZQWL-IO-5CZRW2-I 使用手册

版本号: V1.0

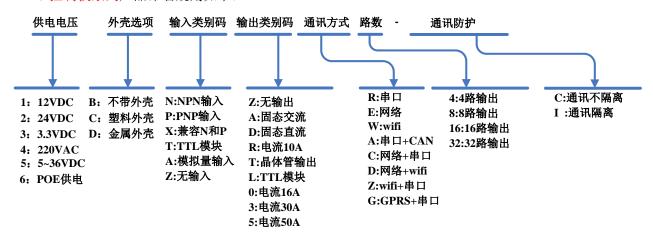
拟制人:智嵌物联团队

时间: 2019年07月8日

www.zhiqwl.com I


目 录

前言	言		3
1	产品惊	快速入门	4
	1.1	使用网络控制软件	4
	1.2	使用网络调试助手控制	7
2	硬件写	 力能介绍	7
	2.1	网络特性	8
	2.2	硬件特点	8
3	模块硕	更件接口	9
	3.1	模块接口及尺寸	9
4	模块参	>数配置	. 10
	4.1	智嵌网络 IO 配置软件	. 10
	4.2	网页参数配置	11
5	AP 模	式和 STA 模式	. 12
	5.1	STA 模式	
6	模块证	直讯协议	. 16
	6.1	自定义协议	. 16
	(一)	. 16
	6.2	Modbus rtu 协议	
	6.3	Modbus rtu 指令码举例	
	64	Modbus TCP 协议	10



前言

智嵌物联系列产品命名规则一览:

IO 控制板系列产品命名规则如下:

如: ZQWL-IO-1CNRC16-I

12V供电/带外壳/NPN输入/10A电流/网络+串口/16路输出/通讯隔离

3

1 产品快速入门

ZQWL-IO-5CZRW2-I(以下简称控制板)是实现2路继电器输出的IO控制板。控制板具有WIFI通讯接口,可以通过Modbus RTU或自定义协议实现对该控制板的控制,也可以通过本公司开发的上位机控制软件控制。

本节是为了方便用户快速对该产品有个大致了解而编写,第一次使用该产品时建议按照 这个流程操作一遍,可以检验下产品是否有质量问题。

所需要的测试软件可以到官网下载:

http://www.zhiqwl.com/

硬件准备

为了测试 ZQWL-IO-5CZRW2-I, 需要以下硬件:

- ZQWL-IO-5CZRW2-I 一个;
- 12VDC@1A 电源 1 个;
- 笔记本电脑一个:

图 1.1 硬件准备

1.1 使用网络控制软件

本公司提供有控制软件,第一次使用时建议使用该软件来控制。 控制板的出厂默认参数如下:

表 1.2.1 设备默认参数

用户名	admin	此两项用于网页登录
密码	admin	
WIFI 工作模式	AP	
WIFI 名称	以 zqwl 开头	zqwl+mac
WIFI 密码	12345678	
IP 地址	192.168.1.253	
子网掩码	255.255.255.0	
网关	192.168.1.1	
工作模式	TCP_SERVER	
本地端口	1030	TCP 监听端口
输出时间属性	频闪模式	打开时间和关闭时间均为0,不做任何动作

(1) 连接 WIFI

接上电源适配器,PWR 灯常亮,RUN 灯闪烁(约1HZ),表示供电正常。

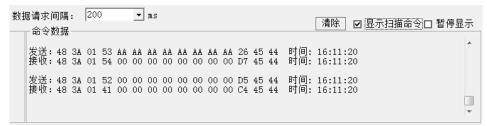

用笔记本或带有无线网卡的电脑搜索 WIFI 名称: 以 zqwl 开头, 搜到后连接,输入密码 12345678,连接。连接成功后"NET"灯常亮。

(2) 打开控制软件

用笔记本打开"网络继电器控制板软件",并选择好网络适配器(wifi 网卡):

点上图中的"搜索设备"按钮,如果硬件连接正常并且 IP 设置正常,则会搜到设备:

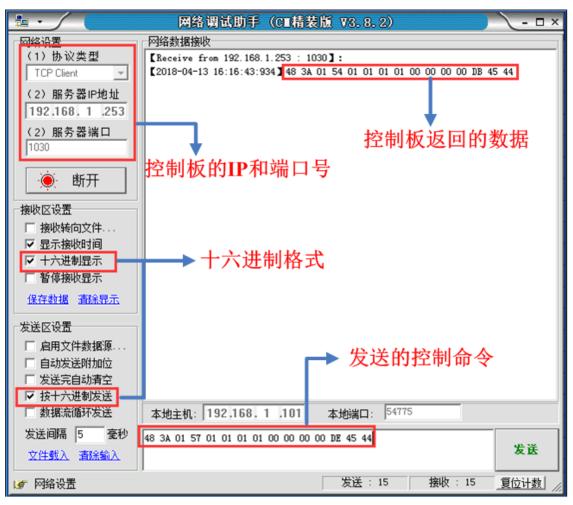
选中搜到的设备,用鼠标双击,或点软件左上角的"设备",选择下拉列表"IO 控制":



弹出控制页面:

"模拟输入"和"开关量输入"对本控制板无效。

Y1~Y2 即为控制板的输出状态,红色表示断开,绿色表示闭合,可以通过单击来改变状态。输入输出状态的数据请求间隔可以设定,默认是200ms。如果将"显示扫描命令"打勾,则会看到输入输出的数据请求指令发发送以及控制板的返回:


调试时一般不将该选项打勾,以便手动发送的命令和返回的数据方便看到。例如,手动点"输出:全部打开":

1.2 使用网络调试助手控制

打开网络调试助手,在网络助手的"协议类型"下拉列表中,选择"TCP Client"(控制板的工作模式是TCP SERVER);将"服务器IP地址"一栏中输入设备的IP地址:192.168.1.253. 在"服务器"端口一栏中输入控制板的本地端口: 1030。以上都设置好后,点击"连接",连接成功后,连接按钮的状态将变成红色灯,如图所示。

有关详细控制命令请参考本文档的通讯协议部分。

2 硬件功能介绍

ZQWL-IO-5CZRW2-I是一款2路继电器输出的工业级IO控制板。他具有1路WIFI通讯接口;该控制板提供三种通讯协议: Modbus TCP、Modbus RTU和自定义协议。

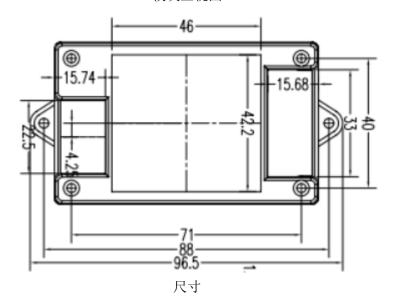
2.1 网络特性

- 支持静态和动态 IP;
- · 无线支持ap和sta模式。
- ·无线ap模式下支持dhcp服务器。
- 工作端口,目标 IP 和目标端口均可设定;
- · 支持DNS功能;
- 支持网络在线升级固件功能;
- 可以跨越网关,交换机,路由器;可以工作在局域网,也可工作在互联网;
- 支持协议包括 ETHERNET、ARP、IP、ICMP、UDP、DHCP、TCP;
- 支持Modbus TCP 转RTU功能;

2.2 硬件特点

表 1 硬件参数

序号	名称	参数
1	型号	ZQWL-IO-5CZRW2-I
2	供电电压	9~36VDC (推荐12V)
3	供电电流	小于170ma
4	无线wifi	通用802.11BGN无线控制器
5	输出	2路继电器输出,光电隔离
6	出厂默认参数	Wifi工作在AP模式,SSID以zqwl开头;密码: 12345678,
		控制板地址: 1, IP:192.168.1.253
7	RESET按键	3秒,进入wifi配网模式;大于5秒,恢复出厂参数
8	工作温度	工业级: -40~85℃
9	储存温度	-65 [~] 165℃
10	湿度范围	5~95%相对湿度



3 模块硬件接口

3.1 模块接口及尺寸

模块正视图

4 模块参数配置

本模块可以通过"智嵌串口服务器配置软件"以及网页的方式进行参数的配置。注意, 模块只有重启后,新设置的参数才生效。

4.1 智嵌网络 IO 配置软件

可以通过配置软件对模块的参数配置,可以配置的参数如下:模块 IP,子网掩码,网关,DNS 服务器,MAC 地址(也可以采用出厂默认);也可以通过配置软件对模块进行固件升级。

使用方法如下:

- 1、 将模块通过网线和电脑或路由器连接,并给模块上电,RUN 灯闪烁(约 1Hz)表示模块启动正常。
- 2、 基本参数设置

图 3.1.1 配置软件

- IP 地址类型支持静态 IP 和动态 IP:
- MAC 地址默认情况下由系统自行计算得到,保证每个模块不同(也可以由用户自行设定)。
 - 工作模式支持: TCP SERVER,TCP CLIENT,UDP SERVER,UDP CLIENT。
 - 该模块支持 DNS 功能,可以在目标 IP/域名栏填写所要连接的域名网址。
- 用户名和密码是为网页配置登陆所用,默认用户名是 admin,密码是 admin,可以修改(用户名只能用配置软件修改,密码既可用配置修改也可以用网页修改)。
- •输出属性的模式均为频闪模式,打开时间和关闭时间均为0,表示不做任何时间触发动作。
 - wifi 设置:可以配置 wifi 的工作模式, SSID 和密码。
 - •输出时间设置:需要点击"读取参数"后,才能显示,然后进行修改即可。 点击上图中的"搜索设备",如果搜索成功,设备列表中:

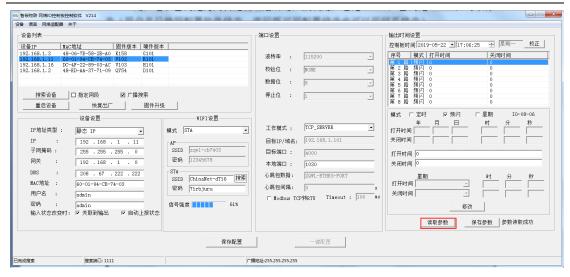
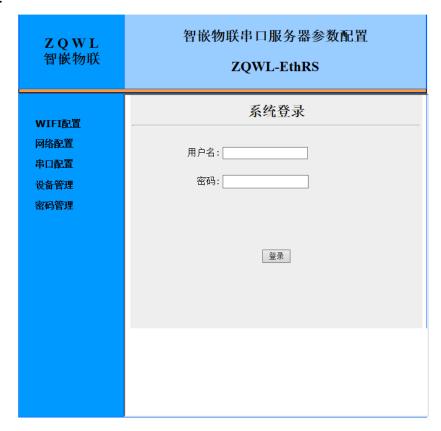


图 3.1.2 模块搜索


需要修改模块的参数时,需要点击"保存设置"后,参数才能保存到模块中。

用该配置软件可以对模块进行固件升级,如需要则可以联系厂家获取最新固件,升级功能要慎用。

4.2 网页参数配置

网页配置提供中英文两个版本,如果要使用网页进行参数配置,首先要知道模块的 IP,如果不慎忘记,可以通过按住"CFG"按键,保持5秒,模块恢复出厂设置,此时模块的 IP 是: 192.168.1.253。

在浏览器中输入: http://192.168.1.253/, 回车,则出现配置网页,需要认证用户名和密码(和配置软件中的一致),初始用户名为: admin,初始密码为: admin。中文版:

英文版:

登陆成功后就可以对模块配置了。

5 AP 模式和 STA 模式

本模块提供2种 wifi 工作模式: AP和 STA。

出厂默认为 AP 模式, SSID 名称以 zqwl 开头, 密码为 12345678, 该模式使用可以参考本文档"产品快速入门"部分。

STA 模式下需要给模块指定 wifi 路由器(或其他 AP 设备)的 SSID 和密码。

5.1 STA 模式

该模式下需要设置要连接 AP 设备的 SSID 和密码。有两种设置方法:软件搜索和扫码搜索。

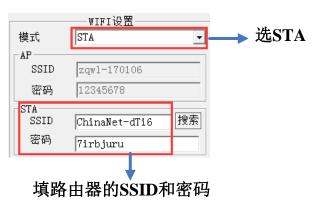
(1) 软件搜索

如果模块的当前工作模式是 AP 模式,需将电脑(笔记本)或其他 wifi 设备连上模块(SSID),然后才能使用配置软件或浏览器搜索:

如果模块的当前工作模式是 STA 模式,并且已经连上了路由器(SSID),需将电脑或其他 wifi 设备也与该路由器连接,然后才能使用配置软件或浏览器搜索。

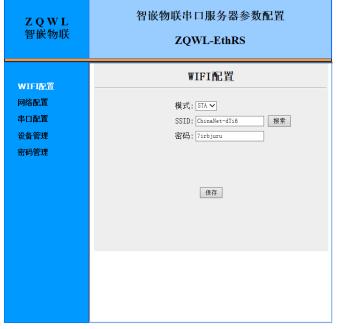
如果不清楚模块的当前工作模式,不能使用配置软件或浏览器搜索。

打开配置软件,确认所选的网络适配器正确:


www.zhiqwl.com

然后点"搜索设备":

搜到设备后,就可以配置 wifi 的工作模式和 SSID 了:



也可以通过点上图中的"搜索"来扫描当前的 SSID 名称:

通过浏览器也可以实现该功能:

可以直接输入 SSID 和密码,也可以通过上图的"搜索"来扫描当前的 SSID:

(2) 扫码搜索

此种方法是**手机先和路由器连接**,然后通过微信软件扫描二维码的方式实现对模块的自动配置。此种方法的优点是不必知道模块的当前工作模式,缺点是必须借助手机和微信软件。第一步,手机连上路由器。

第二步,按住 CFG 按钮保持 3 秒,配网指示灯(天线旁边的灯)快闪后,松开,此时模块进入扫码配置模式:

配网模式按键

第三步,用手机打开微信软件,扫描下图的二维码:

第四步,在手机弹出的页面上点"连接":

Wi-Fi 密码 ●●●●●●●

连接成功后,模块的配网指示灯会常亮,这时模块已和路由器连接成功,可以进行通讯了。

6 模块通讯协议

该模块支持两种协议: 自定义协议和 modbus rtu 协议。

6.1 自定义协议

自定义协议采用固定帧长(每帧 15 字节),采用十六进制格式,并具有帧头帧尾标识,该协议适用于"ZQWL-IO"系列带外壳产品。该协议为"一问一答"形式,主机询问,控制板应答,只要符合该协议规范,每问必答。

该协议指令可分为两类:控制指令类和配置指令类。

控制指令只要是控制继电器状态和读取开关量输入状态。配置指令类主要是配置板子的运行参数以及复位等。

(一) 控制指令

控制类指令分为2种格式:一种是集中控制指令,一种是单路控制指令。

(1) 集中控制指令

此类指令帧长为 15 字节,可以实现对继电器的集中控制(一帧数据可以控制全部继电器状态)。详细指令如表 8.0.1 所示:

表 8.0.1 ZQWL-IO 集中控制指令表

	帧头		帧头		地址码	命令码	8 字节数据	女据 校验和		尾
指令名称	Byte1	Byte2	Byte3	Byte4	Byte5~ Byte12	Byte13	Byte14	Byte15		
写继电器状态	0X48	0X3A	Addr	0X57	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44		

www. zhiqwl. com

智嵌 IO 控制板 5CZRW2-I 使用手册

应答"写继电器状态"	0X48	0X3A	Addr	0X54	DATA1~DATA8	前 12 字节和(只取低 8 位)	0X45	0X44
读继电器状态	0X48	0X3A	Addr	0X53	全为 0XAA	前 12 字节和 (只取低 8 位)	0X45	0X44
应答"读继电器状态"	0X48	0X3A	Addr	0X54	DATA1~DATA8	前 12 字节和 (只取低 8 位)	0X45	0X44

注:表中的"8字节数据"即对应继电器板的状态数据,2路系列只用前2字节(DATA1~2), 后 6 字节无意义, 0x01 表示有信号, 0x00 表示无信号。

集中控制命令码举例(十六进制):

读取地址为1的控制板开关量输入状态:

48 3a 01 52 00 00 00 00 00 00 00 00 d5 45 44

地址为1的控制板收到上述指令后应答:

48 3a 01 41 01 01 00 00 00 00 00 00 c6 45 44

此应答表明,控制板的 X1 和 X2 输入有信号(高电平), X3 和 X4 无信号(低电平)。 注意由于该控制板只有4路输入,在应答帧8字节数据的后4字节(00000000)无意 义,数值为随机。

● 向地址为1的控制板写继电器状态:

48 3a 01 57 01 00 01 00 00 00 00 00 dc 45 44

此命令码的含义是令地址为1的控制板的第1个和第3个继电器常开触点闭合,常闭触 点断开;令第2和第4个继电器的常开触点断开,常闭触点闭合。注意继电器板只识别0 和 1, 其他数据不做任何动作, 所以如果不想让某一路动作, 可以将该路赋为其他值。例如 只让第1和第3路动作,其他两路不动作,可以发如下指令:

48 3a 01 57 01 02 01 02 00 00 00 00 e0 45 44

只需要将第2和第4路置为02(或其他值)即可。

控制板收到以上命令后,会返回控制板继电器状态,如:

48 3a 01 54 01 00 01 00 00 00 00 00 d9 45 44

(2)单路控制指令

此类指令帧长为10字节,可以实现对单路继电器的控制(一帧数据只能控制一个继电 器状态)。此类指令也可以实现继电器的延时关闭功能。

详细指令如表 8.0.2 所示:

表 8.0.2 ZQWL-IO 单路控制指令表

	1	帧头	地址码	命令码		4字节数据			ф	
指令名称	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10
写继电器状态	0X48	0X3A	Addr	0X70	继电器序号	继电器状态	时间 TH	时间 TL	0X45	0X44
应答"写继电器状态"	0X48	0X3A	Addr	0X71	继电器序号	继电器状态	时间 TH	时间 TL	0X45	0X44
读继电器状态	0X48	0X3A	Addr	0X72	继电器序号	继电器状态	时间 TH	时间 TL	0X45	0X44
应答"读继电器状态"	0X48	0X3A	Addr	0X71	继电器序号	继电器状态	时间 TH	时间 TL	0X45	0X44

上表中, Byte3 是控制板的地址, 固定为 0x01; Byte5 是要操作的继电器序号, 取值范 围是 1 到 32 (对应十六进制为 0x01 到 0x20); Byte6 为要操作的继电器状态: 0x00 为常闭 触点闭合常开触点断开,0x01 为常闭触点断开常开触点闭合,其他值无意义(继电器保持 原来状态); Byte7 和 Byte8 为延时时间 T (收到 Byte6 为 0x01 时开始计时,延时结束后关 闭该路继电器输出),延时单位为秒,Byte7是时间高字节TH,Byte8是时间低字节TL。例 如延时 10 分钟后关闭继电器,则:

时间 T=10 分钟=600 秒, 换算成十六进制为 0x0258, 所以 TH=0x 02, TL=0x 58。

如果 Byte7 和 Byte8 都填 0x00,则不启用延时关闭功能(即继电器闭合后不会主动关 闭)。

单路命令码举例(十六进制):

● 将地址为1的控制板的第1路继电器打开:

发送: 48 3a 01 70 01 01 00 00 45 44

控制板收到以上命令后,将第1路的继电器常闭触点断开,常开触点闭合,并会返回控制板继电器状态:

48 3a 01 70 01 01 00 00 45 44

● 将地址为1的控制板的第1个继电器关闭:

发送: 48 3a 01 70 01 00 00 00 45 44

控制板收到以上命令后,将第1路的继电器常闭触点闭合,常开触点断开,并会返回控制板继电器状态:

48 3A 01 71 01 00 00 00 45 44

● 将地址为1的控制板的第1路继电器打开延时10分钟后关闭:

发送: 48 3a 01 70 01 01 02 58 45 44

控制板收到以上命令后,将第1路的继电器常闭触点断开,常开触点闭合,并会返回控制板继电器状态,然后开始计时,10分钟之后将第一路的继电器常闭触点闭合,常开断开。

● 将地址为1的控制板的第1路继电器打开延时5秒后关闭:

发送: 48 3a 01 70 01 01 00 05 45 44

控制板收到以上命令后,将第1路的继电器常闭触点断开,常开触点闭合,并会返回控制板继电器状态,然后开始计时,5秒之后将第一路的继电器常闭触点闭合,常开断开。

6.2 Modbus rtu 协议

本控制板实现部分必要的 modbus rtu 协议,通讯格式如下:

Addr Cmd	Data(n字节) Crc (2字节)
----------	---------------------

Addr 为 0xff 时,是广播地址,所有从机都能接收并处理,必要时要做出回应。广播地址可以用于对控制板的编址以及获取控制板的地址。

控制板实现如下功能码:

Cmd	含义	备注
0x01	读线圈	Data: 2 字节起始地址+2 字节线圈个数,线圈个数不能超过 2
0x05	写单个线圈	Data: 2字节起始地址+2字节线圈值
0x0f	写多个线圈	Data: 2字节起始地址+2字节线圈个数+1字节个数+数值

6.3 Modbus rtu 指令码举例

以地址码 addr 为 0x01 为例说明。

1) 读线圈(0X01)

为方便和高效,建议一次读取2个线圈的状态。

外部设备请求帧:

Addr (ID)	功能码	起始地址	起始地址	线圈数量	线圈数量	CRC16	CRC16
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X01	0X00	0X00	0X00	0X02	计算	获得

控制板响应帧:

Addr (ID)	功能码	字节数	线圈状态	CRC16	CRC16
			(只取低2位)	(高字节)	(低字节)
0X01	0X01	0X01	XX	计算获得	

其中线圈状态 XX 释义如下:

В7	B6	B5	B4	В3	B2	B1	В0
		高 6 个 bit	位无意义			线圈 2	线圈 1

B0~B1 分别代表控制板 2 个继电器状态(Y1~Y2),位值为 1 代表继电器常开触点闭合,常闭触点断开;位值为 0 代表继电器常开触点断开,常闭触点闭合;位值为其他值,无意义。

2) 写单个线圈 (0X05)

外部设备请求帧:

0X01	0X05	0X00	XX	XX	0X00	计算	工 获得
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
Addr (ID)	功能码	起始地址	起始地址	线圈状态	线圈状态	CRC16	CRC16

注意:起始地址(低字节)取值范围是0X00~0X01分别对应控制板的2个继电器(Y1~Y2); 线圈状态(高字节)为0XFF时,对应的继电器常开触点闭合,常闭触点断开; 线圈状态(高字节)为0X00时,对应的继电器常开触点断开,常闭触点闭合。 线圈状态(高字节)为其他值时,无意义。

控制板响应帧:

Addr (ID)	功能码	起始地址	起始地址	线圈状态	线圈状态	CRC16	CRC16
		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X05	0X00	XX	XX	0X00	计算获得	

3) 写多个线圈 (0X0F)

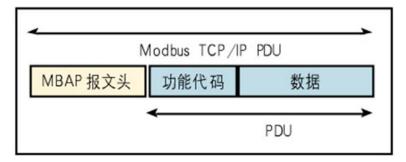
建议一次写入2个线圈状态。

外部设备请求帧:

0X	X01	0X0F	0X00	XX	0X00	0X02	0X01	XX	计算	拿获得
				字节)						
((ID)		(高字节)	址 (低	(高字节)	(低字节)			(高字节)	(低字节)
1	Addr	功能码	起始地址	起始地	线圈数量	寄存器数据	字节数	线圈状态	CRC16	CRC16

其中,线圈状态 XX 只取低 2位,释义如下:

B7	B6	B5	B4	В3	B2	B1	B0
高 6 个 bit 位无意义							线圈 1


B0~B1 分别对应控制板的 2 个继电器 Y1~Y2。位值为 1 代表继电器常开触点闭合,常闭触点断开;位值为 0 代表继电器常开触点断开,常闭触点闭合;位值为其他值,无意义。控制板响应帧:

Addr	功能码	起始地址	起始地址	线圈数量	寄存器数据	CRC16	CRC16
(ID)		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X0F	0X00	XX	0X00	0X02	计算获得	

6.4 Modbus TCP 协议

Modbus TCP 数据帧包含报文头、功能代码和数据 3 部分(功能码和数据与 RTU 相同):

(1) MBAP 报文头(MBAP、Modbus Application Protocol、Modbus 应用协议)分 4 个域,共7个字节,如下表所示:

域	长度(B)	描述	客户端	服务器端	
传输标志	2	标志某个 Modbus 询问 / 应答的传输	由客户端生成	应答时复制该值	
协议标志	2	0=Modbus 协议 1=UNI-TE 协议	由客户端生成	应答时复制该值	
长度	2	后续字节计数	由客户端生成	应答时 由服 务器 端重新 生成	
单元标志	1	定义连续于 目的其他设备	由客户端生成	应答时复制该值	

单元标志即为控制板的地址。

- (2) Modbus TCP 功能代码 本控制板实现必要的功能码,具体含义和用法参考上节。
- (3) Modbus TCP 数据 即为 Modbus RTU 的数据域。