【智嵌物联】4路串口继电器控制器

深圳总部

地址:广东省深圳市宝安区新桥街道新桥社区

新和大道 6-18 号 1203

网址: www.zhiqwl.com 电话: 0755-23203231

天猫店铺

北京办事处

电话: 18210365439

地址:北京市房山城区德润街6号院8号楼3层

淘宝店铺

微信公众号

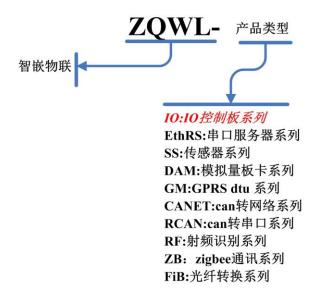
公司官网

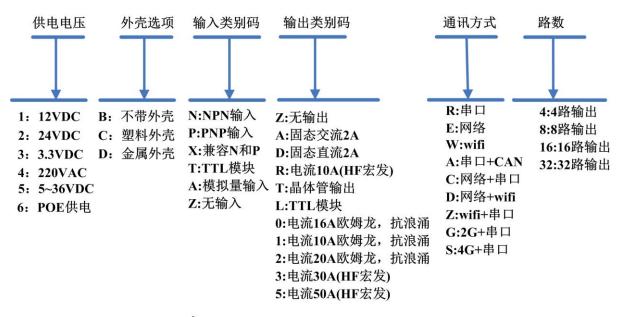
修订历史

版本	日期 原因		
V1.0	2021.06.27	更新 word 样式、增加高级功能章节	
V1.1	2024 12 15	1、增加 modbus 功能码 0x10	
	2021.12.15	2、增加脉冲计数介绍	

目 录

1.	关士	·手册		1
	1.1	命名规则	U	1
	1.2	本手册证	5用型号	2
	1.3	相关产品	l资料下载	2
2.	产品	快速入门		3
	2.1	功能特点	Ξ	3
	2.2		<u>Z</u>	
	2.3		置软件控制	
	2.4	1007.14	J调试助手控制	
	2.5		odbus poll 软件工具控制	
3.	产品			
	3.1		女	
	3.2		竞参数	
	3.3	- 12 4	户等级	
	3.4		见格	
	3.5		俞入参数 ·	
	3.6		<u> </u>	
4.	.,		械尺寸	_
	4.1	,	J布局	
			QWL-IO-1CNRR4、ZQWL-IO-2CNRR4 接口布局	
			QWL-IO-1CN1R4、ZQWL-IO-1CN1R4 接口布局	
			QWL-IO-1CX0R4、ZQWL-IO-2CX0R4 接口布局	
			QWL-IO-1CX3R4、ZQWL-IO-2CX3R4 接口布局	
	4.2		QWL-IO-1CX5R4、ZQWL-IO-2CX5R4 接口布局 长量输入	
	4.2		と単加へは器輸出接线	
	4.3 4.4	747.	B奋制	
_		*** * * *		
٥.	5.1		□ IO 配置软件	
6				
Ο.	6.1		· · · · · · · · · · · · · · · · · · ·	
	6.2		输入状态自动上报	
	6.3		输入与 DO 输出联动	
	6.4		是备之间联动	
	6.5		- T - T - T - T - T - T - T - T - T - T	
	6.6		Ž	
7.	模块	通讯协议		26
	7.1		办议	
			空制指令	
		7.1.2 酉	己置指令	28
	7.2	Modbus	rtu 协议	29
	7.3	Modbus	rtu 指令码举例	31
8.	恢复	出厂设置	以及固件升级	35




	模块固件升级	35
_	恢复出厂设置	35
	kr 乞 山 三 竹 栗	

1. 关于手册

1.1 命名规则

智嵌物联继电器控制设备的命名规则如图 1.1 所示。

如: ZQWL-IO-1CNRC16

12V供电/带外壳/NPN输入/10A电流/网络+串口/16路输出

图 1.1 命名规则

1.2 本手册适用型号

除特别说明,本手册所介绍的功能均适用型号如表 1.1 所示。

不同型号的设备在硬件参数上有所差别,软件功能上完全一样,本手册的案例以 ZQWL-IO-1CXRC4 为例进行说明,其他型号的设备用法完全一样。

表 1.1 本手册适用型号表

				继电器	器输出			
型号	供电电	通信	4 路 DI 输入	继电器	继电器参	外壳尺寸	购买链接	说明
	压	接口		品牌	数			
ZQWL-IO-1CNRR4	12V		4 路 DI	宏发	10A	导轨安装		两种型号只是供
ZQWL-IO-1CN1R4		RS485	兼容	欧姆龙	详细参数	115*90*40mm	点击购买	电电压不同,其
ZQWL-IO-2CNRR4	24V	RS232	NPN/PNP	宏发	见表 3.4	(长*宽*高)		他参数相同
ZQWL-IO-2CN1R4				欧姆龙				
ZQWL-IO-1CX0R4	12V	RS485	4 路 DI		16A	导轨安装		两种型号只是供
ZQWL-IO-2CX0R4	24V	RS232	兼容	欧姆龙	详细参数	155*110*60mm	点击购买	电电压不同,其
			NPN/PNP		见表 3.5	(长*宽*高)		他参数相同
ZQWL-IO-1CX3R4	12V	RS485	4 路 DI		30A	导轨安装		两种型号只是供
ZQWL-IO-2CX3R4	24V	RS232	兼容	宏发	详细参数	155*110*60mm	点击购买	电电压不同,其
			NPN/PNP		见	(长*宽*高)		他参数相同
					表 3.6			
ZQWL-IO-1CX5R4	12V	RS485	4 路 DI		50A	导轨安装		两种型号只是供
ZQWL-IO-2CX5R4	24V	RS232	兼容	宏发	 详细参数	155*110*60mm	点击购买	电电压不同,其
			NPN/PNP		上 年细多数 见	(长*宽*高)		他参数相同
					表 3.6			

1.3 相关产品资料下载

- 2 路串口继电器控制器使用手册下载地址:点击下载
- 4路串口继电器控制器使用手册下载地址:点击下载
- 8 路串口继电器控制器使用手册下载地址:点击下载
- 16 路串口继电器控制器使用手册下载地址:点击下载
- 32 路串口继电器控制器使用手册下载地址:点击下载
- ZQWL-IO-1BN1A8 使用手册下载地址:点击下载
- ZQWL-IO-1BX1A16 使用手册下载地址:点击下载

配置工具下载地址:点击下载

↓ 更多产品请到官网或线上商城查看。

2. 产品快速入门

4 路串口继电器控制器,是实现 4 路开关量采集(输入)和 4 路继电器输出的 IO 控制板。控制板具有 RS232 和 RS485 通讯接口,可以通过 Modbus RTU 或自定义协议实现对该控制板的控制,也可以通过本公司开发的上位机控制软件控制。

继电器输出负载电流从 10A 到 50A 可选,继电器品牌可选,具体型号说明详见表 1.1 所示,或直接向公司业务咨询。

2.1 功能特点

- ◆ 工业级;
- ◆ 4 路 DI、4 路 DO、1 路 RS485、1 路 RS232;
- ◆ 支持主动上报、联动控制、延时断开等;
- ◆ 支持脉冲计数;
- ◆ 支持通过 RS485 总线级联多台设备;
- ◆ 支持 ModBus RTU 协议控制;
- ◆ 支持自定义指令控制;
- ◆ 设备地址可修改:
- ◆ 丰富的 LED 状态指示灯, 快速定位问题;
- ◆ 支持本地升级;
- ◆ 支持导轨安装。

本节是为了方便用户快速对该产品有个大致了解而编写,第一次使用该产品时建议按照这个流程操作一遍,可以检验下产品是否有质量问题。

注意,测试前请务必检查电源适配器是否与控制板型号相符合,如果没有特别注明,本文档均以ZQWL-IO-1CXRR4为例说明。

所需要的测试软件可以到官网下载:

http://www.zhiqwl.com/

2.2 硬件准备

为了测试 ZQWL-IO-1CXRR4, 需要以下硬件:

- ZOWL-IO-1CXRR4 一个:
- DC12V 1A 电源适配器一个;需要把圆头剪开,露出红黑两根线。
- 串口线一个(如果不测 RS232 功能,可以不用);
- 串口(或 USB)转 RS485 接头一个(如果不测 RS485 功能,可以不用);

图 2.1 硬件准备

2.3 使用配置软件控制

本公司提供有控制软件,第一次使用时建议使用该智嵌物联的配置软件来控制。 控制板的出厂默认参数如表 2.1 所示。

表 2.1 设备默认参数

项目	参数	备注
控制板地址	1	可以通过协议或控制软件修改
RS232/RS485 串口参数	9600, None, 8, 1	

1. 硬件连接

用串口线(USB 转 RS485/232)将电脑和设备的串口连起来,并接上电源适配器(注意, "VCC"接电源正极(红线), "GND"接电源负极(黑线),如下图 2.2 所示。

图 2.2 电源接口

2. 打开"智嵌物联 IO 控制板控制软件"

选择合适的串口号,波特率选择 9600,控制板地址选"控制板 1","通讯协议"任选一种(一共有两种:自定义模式和 Modbus 协议),如图 2.3 所示。然后点击"打开串口",打开成功后就可以和控制板通讯了。

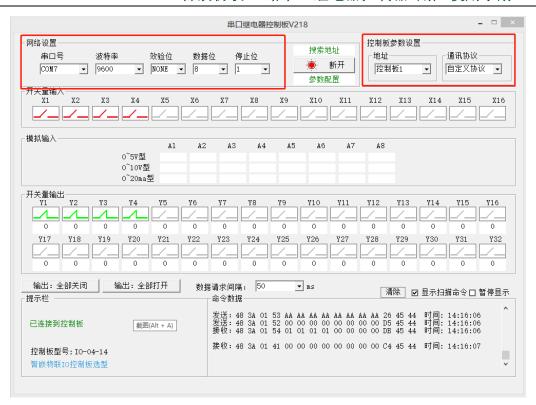


图 2.3 配置软件

说明:

开关量输入: X1~X4 即为控制板的开关量输入状态,红色表示无信号,绿色表示有信号; 开关量输出: Y1~Y4 即为控制板的输出状态,红色表示继电器常开与公共端触点断开, 绿色表示继电器常开与公共端触点闭合,可以通过单击来改变状态。

输入输出状态的数据请求间隔可以设定,默认是 200ms。如果将"显示扫描命令"打勾,则会看到输入输出的数据请求指令发发送以及控制板的返回。

图 2.4 命令显示栏

3. 调试时一般不将该选项打勾,以便手动发送的命令和返回的数据方便看到。例如, 手动点"输出:全部打开"。

图 2.5 手动控制

至此,已实现通过智嵌物联专用的配置软件对设备的 DO、DI 进行控制的目的了。

2.4 使用串口调试助手控制

打开串口调试助手,并设置相应的串口号,波特率选择 9600,并将要发送的命令码填到发送区(一定要选中"按十六进制发送"),有关详细控制命令请参考本文档的第7章。

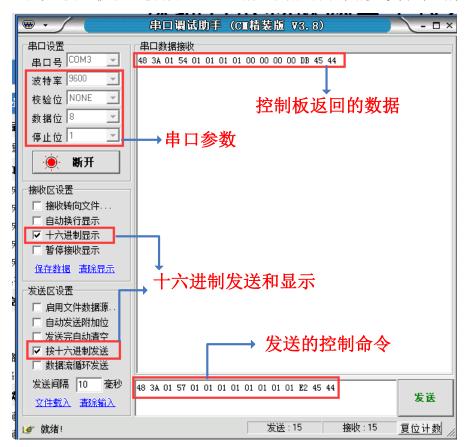


图 2.6 串口调试助手发送控制指令

2.5 使用 Modbus poll 软件工具控制

本控制板兼容标准的 Modbus RTU 协议,可以通过该协议来与其他 Modbus RTU 设备或软件通讯。本测试使用"Modbus poll"软件作为控制软件(该软件的安装过程这里不做介绍)。

控制板默认地址为1,波特率为9600。

(1) 读取寄存器地址从 0x0000 到 0x000e 的 15 个寄存器的值,这些寄存器的含义详见 7.2 小节。

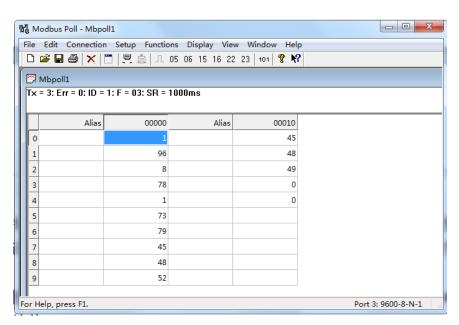


图 2.7 Modbus poll 读设备信息

(2) 控制一路继电器输出

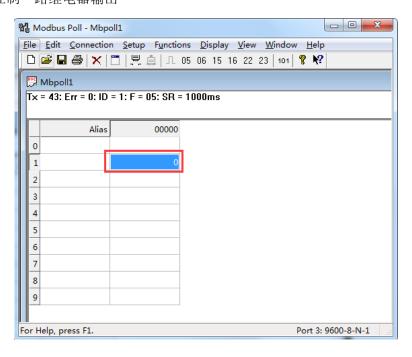


图 2.8 Modbus poll 控制继电器

上图中红色框即为继电器的状态: 0 表示继电器常开与公共端触点断开, 1 表示继电器常开与公共端触点闭合,可以用鼠标选中该方框,再按一下空格键来改变状态:

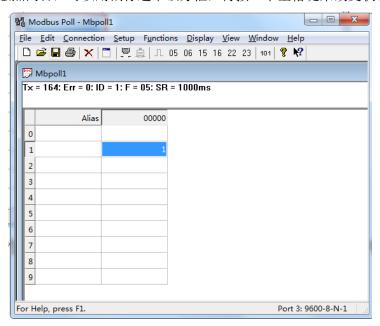


图 2.9 Modbus poll 控制继电器

通过该软件也可以读取输入状态,这里不再列举。

3. 产品规格

本小节除特别说明,所列参数均适用表 1.1 所示的型号。

3.1 电气参数

除非特别说明,所列参数是指 T_{amb} =25 $^{\circ}$ C时的值。

表 3.1 电气参数

适用型号	会粉夕护	额定值			单位
坦用空写	参数名称		典型值	最大值	中心
ZQWL-IO-1CNRR4	电源电压	11V	12	13V	V
ZQWL-IO-1CN1R4					
ZQWL-IO-1CX0R4	工作电流		170		m 1
ZQWL-IO-1CX3R4	(4路继电器全打开)	-	170	-	mA
ZQWL-IO-1CX5R4					
ZQWL-IO-2CNRR4	电源电压	21V	24	25V	V
ZQWL-IO-2CN1R4					
ZQWL-IO-2CX0R4	工作电流				
ZQWL-IO-2CX3R4	(4路继电器全打开)	-	100	-	mA
ZQWL-IO-2CX5R4					
70MI IO 2CVTR4	电源电压	220VAC 交流电			
ZQWL-IO-2CXTR4	工作电流		和用户负载有乡	Ć	

3.2 工作环境参数

表 3.2 工作环境参数

参数名称		单位		
少 数石柳	最小值	典型值	最大值	丰加
工作环境温度	-40	-	85	$^{\circ}\!\mathbb{C}$
存贮温度	-40	-	85	$^{\circ}\!\mathbb{C}$
工作环境湿度		5~95%RH		-

3.3 EMC 防护等级

除非特别说明,所列参数是指 T_{amb} =25 $^{\circ}$ C时的值。

表 3.3 防护等级参数

接口	浪涌等级	ESD 等级
电源接口	8/20μS 波形: ±2KV	空气放电: ±15KV
通信接口	10/70μS 波形:±4KV	接触放电: ±8KV
按键及其他	-	

3.4 继电器规格

除非特别说明,所列参数是指 T_{amb} =25 $^{\circ}$ C时的值。

表 3.4 10A 继电器具体参数

项目	参数		
	欧姆龙继电器	宏发继电器	
额定负载	10A@AC250V	10A@AC277V	
	10A@30V	10A@28V	
触点接触电阻	50mΩ以下	100mΩ以下	
动作时间	15ms 以下	10ms 以下	
复位时间	5ms 以下	5ms 以下	
最大开关频率	机械: 18,000 次/小时	-	
	额定负载: 1,800 次/小时	-	
寿命	机械: AC 1,000 万次以上、DC 2,000 万次	机械: 10 万次	
	以上(开关频率 18,000 次/小时)		
	额定负载: 10 万次以上@额定负载(开关	额定负载:5万次以上@额定负载(开关	
	频率 18,00 次/小时)	频率 360 次/小时)	

- ◆ 10A 继电器规格适用型号: ZQWL-IO-1CNRR4、ZQWL-IO-1CN1R4、ZQWL-IO-2CNRR4、ZQWL-IO-2CN1R4
- ❶ 继电器输出端子:常开、常闭、公共端

表 3.5 16A 继电器具体参数

项目	参数
	欧姆龙 继电器
额定负载	16A@AC250V
	16A@30V
触点接触电阻	50mΩ以下
动作时间	15ms 以下
复位时间	5ms 以下
最大开关频率	机械: 18,000 次/小时
	额定负载: 1,800 次/小时
寿命	机械: AC 1,000 万次以上、DC 2,000 万次以上(开关频率 18,000
	次 / 小时)
	额定负载: 10 万次以上@额定负载(开关频率 18,00 次/小时)

- ↓ 16A 继电器规格适用型号: ZQWL-IO-1CX0R4、ZQWL-IO-2CX0R4
- ❶ 继电器输出端子: 常开、常闭、公共端

表 3.6 30A 继电器具体参数

项目	参数
	宏发 继电器
额定负载	30A@AC240V
	30A@30V
触点接触电阻	50mΩ以下
动作时间	<15ms 以下
复位时间	<10ms 以下
寿命	机械: 10 万次
	额定负载: 10 万次以上@额定负载(开关频率 360 次/小时)

- 30A 继电器规格适用型号: ZQWL-IO-1CX3R4、ZQWL-IO-2CX3R4。
- ❶ 继电器输出端子:常开、公共端。

表 3.7 50A 继电器具体参数

项目	参数	
	宏发 继电器	
额定负载	50A@AC277V	
动作时间	<15ms 以下	
复位时间	<15ms 以下	
寿命	机械: 100 万次	
	额定负载: 10 万次以上@额定负载(开关频率 360 次/小时)	

- 30A 继电器规格适用型号: ZQWL-IO-1CX5R4、ZQWL-IO-2CX5R4。
- ♪ 继电器输出端子:常开、公共端。

表 3.8 可控硅输出具体参数

项目	参数
额定电流	16A

● 可控硅输出规格适用型号: ZQWL-IO-2CXTR4

3.5 数字量输入参数

设备数字量输入电平有两种规格:2.7V~7V 规格和 6V~30V 规格,默认 6V~30V 规格,如 有特殊需求,请联系公司销售。除非特别说明,所列参数是指 T_{amb} =25 $^{\circ}$ C时的值。

表 3.9 数字量输入参数

设备输入规格	参数名称	额定值			单位
		最小值	典型值	最大值	半加
6V~30V 规格	高电平输入电压	6.0	-	30	V
	低电平输入电压	-	-	4V	V
2.7V~7V 规格	高电平输入电压	2.7	-	7	V
	低电平输入电压	-	-	1.5	V

3.6 通信参数

除非特别说明,所列参数是指 T_{amb} =25 $^{\circ}$ C时的值。

表 3.10 产品通信参数

项目	参数	指标
RS485	波特率	600bps~460800bps(出厂默认参数: 9600bps, 8, N, 1)
	通信距离	大于 1200 米
RS232	波特率	600bps~460800bps(出厂默认参数: 9600bps, 8, N, 1)

4. 硬件接口及机械尺寸

4.1 产品接口布局

4.1.1 ZQWL-IO-1CNRR4、ZQWL-IO-2CNRR4 接口布局

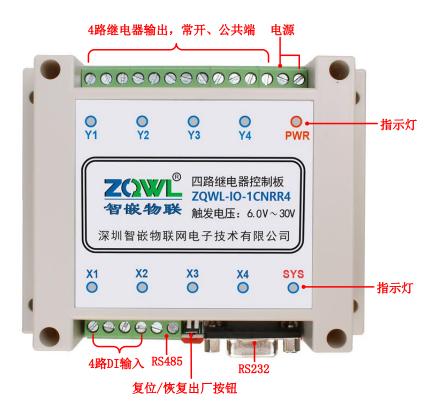


图 4.1 设备的接口布局 1

图 4.2 设备机械尺寸 1

4.1.2 ZQWL-IO-1CN1R4、ZQWL-IO-1CN1R4 接口布局

图 4.3 设备的接口布局 2

图 4.4 设备机械尺寸2

4.1.3 ZQWL-IO-1CX0R4、ZQWL-IO-2CX0R4 接口布局

图 4.5 设备的接口布局 3

图 4.6 设备机械尺寸3

4.1.4 ZQWL-IO-1CX3R4、ZQWL-IO-2CX3R4 接口布局

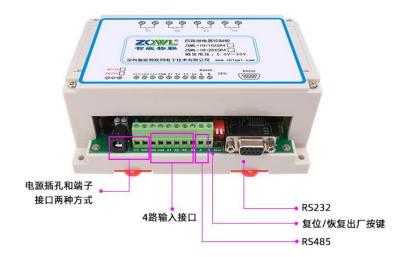


图 4.7 设备的接口布局 4

图 4.8 设备机械尺寸 4

4.1.5 ZQWL-IO-1CX5R4、ZQWL-IO-2CX5R4 接口布局

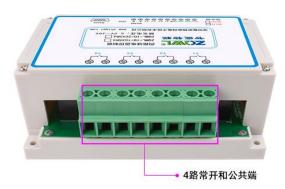


图 4.9 设备的接口布局 5

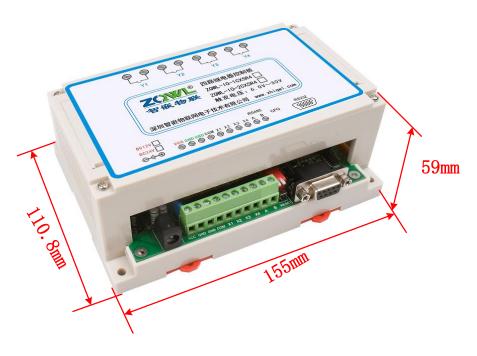


图 4.10 设备机械尺寸 5

4.2 设备开关量输入

本控制板共有 4 个开关量输入,支持干节点、湿节点、NPN、PNP 的接线方法,部分型号的 DI 输入只支持高电平有效,具体型号详见表 1.1 所示。

1. PNP 输入接线

PNP 型输入时,公共端 "COM"为信号"地"(即共阴极,共负极),X1~X4 输入高电平时,有信号,逻辑示意图如图 4.11 所示(以 X1 为例)。

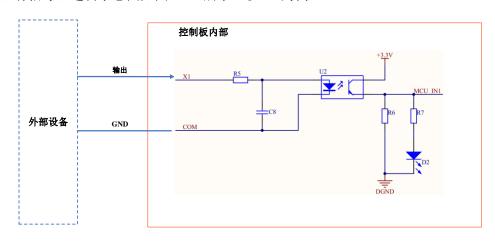


图 4.11 PNP 接线方式

例如, COM接GND上, X1接到VCC上,则第一路输入有信号。

2. NPN 输入接线

NPN 型输入时,公共端"COM"接 VCC(即共阳极,共正极),X1~X4 输入低电平时,有信号,逻辑示意图如图 4.12 所示(以 X1 为例)。

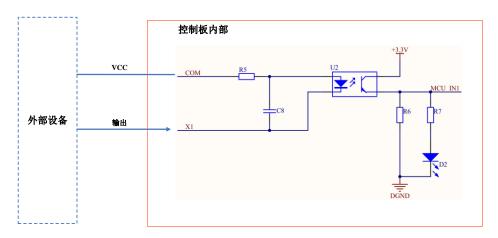


图 4.12 NPN 接线方式

例如, COM接 VCC上, X1接到GND上,则第一路输入有信号。

3. 干节点接线

若用户需要检测的是无源开关信号,可以使用干节点的接线方式。

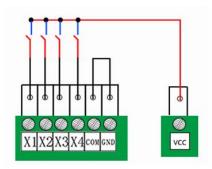


图 4.13 干节点接法

4. 湿节点接线方式

若用户需要检测有源的开关信号,可以采用湿节点的接线方式。

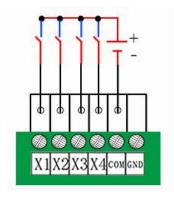


图 4.14 湿节点接法

4.3 设备继电器输出接线

该设备共有 4 路继电器输出,每路都有常开、常闭和公共端三个触点,每路继电器的公 共端触点互相独立,4 路可以分别控制不同的电压,每个端子均有标示。接线图详见《智嵌 物联 IO 控制器接线说明》。

4.4 指示灯

表 4.1 LED 状态指示

指示灯	设备正常时				
电源指示灯(PWR)	常亮				
运行指示灯(RUN)	闪烁(频率约 1HZ)				
	黄灯常亮				
网口灯	绿灯闪烁				
X1~X4	DI 输入有信号时,亮				
	DI 无信号时,灭				
Y1~Y4	DO 继电器常开与公共端触点闭合,亮				
	DO 继电器常开与公共端触点断开,灭				

② ZQWL-IO-1CX0R4、 ZQWL-IO-2CX0R4、 ZQWL-IO-1CX3R4、 ZQWL-IO-2CX3R4、 ZQWL-IO-4CXTR4 这些型号没有 "X1~X4"、"Y1~Y4"指示灯。

5. 模块参数配置

本模块可以通过"智嵌串口 IO 控制板配置软件"进行参数的配置。注意,模块只有重启后,新设置的参数才生效。

5.1 智嵌串口 IO 配置软件

可以通过配置软件对模块的参数配置,可以配置的参数:设备的地址、串口参数、使能主动上报、使能联动控制等。

使用方法如下:

- 1. 将模块通过串口线(USB 转 RS232 或 USB 转 RS485)和电脑连接,并给模块上电, SYS 灯闪烁(约 1Hz)表示模块启动正常。
- 2. 打开配置软件并配置参数

打开配置软件,点击参数配置,进入设备参数配置界面。

图 5.1 配置软件

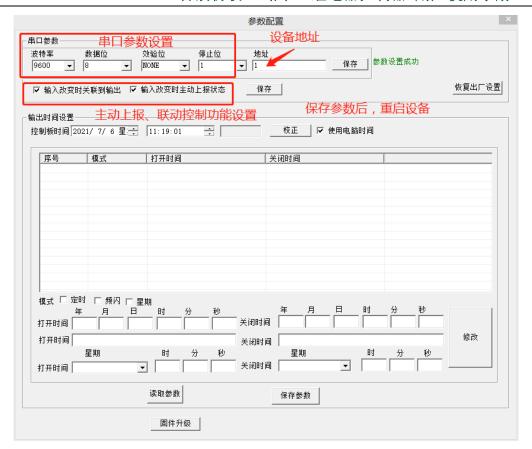


图 5.2 配置界面

3. 保存参数后,重启设备,新参数方可生效。

6. 设备的高级功能

6.1 设备级联控制

该模块有 1 路 RS485 接口和 1 个 RS232 接口。可通过 RS485 接口实现与智嵌 RS485 型 IO 设备的级联,至少可级联 32 个,其拓扑结构如图 6.1 所示。

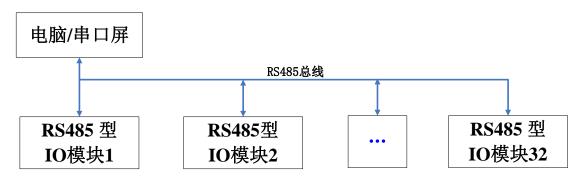


图 6.1 网络 IO 设备与 RS485 IO 设备级联

6.2 设备 DI 输入状态自动上报

当 DI 输入状态变化时,设备会将 DI 状态主动上报,设备默认不开启该功能,须通过配置软件使能"自动上报功能",如图 6.2 所示。保存设置后,须重启设备,参数方可生效。

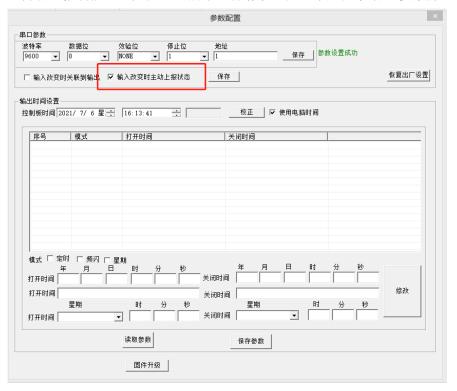


图 6.2 使能自动上报

6.3 设备 DI 输入与 DO 输出联动

DI 输入联动 DO 输出功能: 当 DI 输入有信号时,对应的 DO 继电器会做出对应的动作。

设备默认不开启该功能,须通过配置软件使能"关联到输出",如图 6.3 所示。保存设置后,须重启设备,参数方可生效。

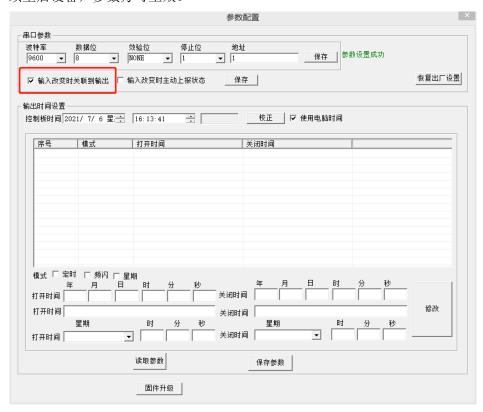


图 6.3 使能 DI 联动 DO 功能

6.4 设备与设备之间联动

两台设备之间通过简单的配置即可实现设备间联动,即设备 A 的 DI 输入信号可以控制设备 B 的 DO 继电器输出。

图 6.4 设备间联动

6.5 延时断开控制

设备收到延时断开指令后,将对应的 DO 继电器常开触点与公共端触点闭合,并会返回控制板继电器状态,然后开始计时,到达用户设置的延时时间之后之后,将设备会将对应的继电器常开触点与公共端触点断开。

该模式下,对继电器发送延时断开指令后,到达延时时间继电器断开。

图 6.5 延时断开控制

6.6 二次开发

提供丰富的函数 SDK 库,用户无需关心内部复杂的底层驱动,即可实现设备的控制;控制指令协议全部开放,方便用户按照项目需求设计相应的控制逻辑。

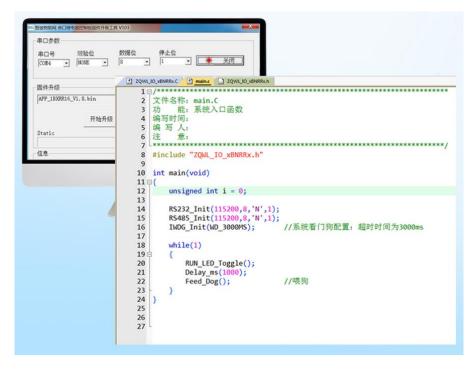


图 6.6 二次开发

7. 模块通讯协议

该设备支持三种协议: Modbus RTU、ASCII 码控制和自定义协议。

7.1 自定义协议

自定义协议采用固定帧长(每帧 15 字节),采用十六进制格式,并具有帧头帧尾标识,该协议适用于"ZQWL-IO"系列带外壳产品。

该协议为"一问一答"形式,主机询问,控制板应答,只要符合该协议规范,每问必答。 该协议指令可分为两类:控制指令和配置指令。

控制指令:控制继电器状态和读取开关量输入状态。

配置指令类: 配置设备参数以及复位等。

7.1.1 控制指令

控制指令分为2种格式:一种是集中控制指令,一种是单路控制指令。

7.1.1.1 集中控制指令

此类指令帧长为 15 字节,可以实现对继电器的集中控制(一帧数据可以控制全部继电器状态)。详细集中控制指令如表 7.1 所示。

项目	帧头		地址	命令	DI/DO 状态	校验和	帧尾	
			码	码	8 字节数据			
字节数	Byte1	Byte2	Byte3	Byte4	Byte5~ Byte12	Byte5~ Byte12 Byte13		Byte1
							4	5
读输入状态	0X48	0X3A	Addr	0X52	任意值	前 12 字节和(只取低 8 位)	0X45	0X44
应答"读输入状态"	0X48	0X3A	Addr	0X41	DATA1~DATA8	前 12 字节和(只取低 8 位)	0X45	0X44
写继电器状态	0X48	0X3A	Addr	0X57	DATA1~DATA8	前 12 字节和(只取低 8 位)	0X45	0X44
应答"写继电器状态"	0X48	0X3A	Addr	0X54	DATA1~DATA8	前 12 字节和(只取低 8 位)	0X45	0X44
读继电器状态	0X48	0X3A	Addr	0X53	任意值	前 12 字节和(只取低 8 位)	0X45	0X44
应答"读继电器状态"	0X48	0X3A	Addr	0X54	DATA1~DATA8	前 12 字节和(只取低 8 位)	0X45	0X44

表 7.1 ZQWL-IO 集中控制指令表

- 表中的"8字节数据"即对应设备的 DI/DO 状态数据,4 路系列只用前4字节(DATA1~4), 后4字节无意义。
- ① DI 开关量输入: 0x01 表示对应 DI 接口上存在有效信号, 0x00 表示对应 DI 接口上无有效信号。
- DO 继电器输出: 0x01 表示对应 DO 继电器常开触点闭合, 0x00 表示对应 DO 继电器常开触点断开, 其他值表示继电器状态不变。

控制码举例(十六进制):

1. 读取地址为 1 的控制板开关量输入状态:

发送: 48 3a 01 52 00 00 00 00 00 00 00 d5 45 44 //读取设备开关量输入状态

地址为1的控制板收到上述指令后应答:

应答: 48 3a 01 41 01 01 00 00 00 00 00 c6 45 44 //应答设备开关量输入状态

此应答表明,控制板的 X1 和 X2 输入有信号(高电平), X3 和 X4 无信号(低电平)。 注意由于该控制板只有 4 路输入,在应答帧 8 字节数据的后 4 字节(00 00 00 00)无意义,数值为随机。

向地址为1的控制板写继电器状态:

发送: 48 3a 01 57 01 00 01 00 00 00 00 00 dc 45 44

此命令码的含义是令地址为 1 的控制板的第 1 个和第 3 个继电器常开触点闭合,常闭触点断开;令第 2 和第 4 个继电器的常开触点断开,常闭触点闭合。注意继电器板只识别 0 和 1,其他数据不做任何动作,所以如果不想让某一路动作,可以将该路赋为其他值。例如只让第 1 和第 3 路动作,其他两路不动作,可以发如下指令:

发送: 48 3a 01 57 01 02 01 02 00 00 00 00 e0 45 44

只需要将第2和第4路置为0x02(或其他值)即可。

控制板收到以上命令后, 会返回控制板继电器状态:

应答: 48 3a 01 54 01 00 01 00 00 00 00 00 d9 45 44

7.1.1.2 单路控制指令

此类指令帧长为 10 字节,可以实现对单路继电器的控制(一帧数据只能控制一个继电器状态)。此类指令也可以实现继电器的延时断开功能。

详细指令如表 7.2 所示。

表 7.2 ZQWL-IO 单路控制指令表

项目	帧头		地址	命令						
			码	码						
字节	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte10
写继电器状态	0X48	0X3A	Addr	0X70	继电器序号	继电器状态	时间TH	时间 TL	0X45	0X44
应答"写继电器状态"	0X48	0X3A	Addr	0X71	继电器序号	继电器状态	时间TH	时间 TL	0X45	0X44
读继电器状态	0X48	0X3A	Addr	0X72	继电器序号	继电器状态	时间TH	时间TL	0X45	0X44
应答"读继电器状态"	0X48	0X3A	Addr	0X71	继电器序号	继电器状态	时间TH	时间 TL	0X45	0X44

说明:

Byte3 是控制板的地址,取值范围 0x00~0xfe,用户可以通过配置指令来设置地址码;

Byte5 是要操作的继电器序号,取值范围是 1 到 4 (对应十六进制为 0x01 到 0x04);

Byte6 为要操作的继电器状态: 0x00 为常闭触点闭合常开触点断开, 0x01 为常闭触点断开常开触点闭合, 其他值为继电器保持原来状态;

Byte7 和 Byte8 为延时时间 T (收到 Byte6 为 0x01 时开始计时,延时结束后关闭该路继电器输出),延时单位为秒,Byte7 是时间高字节 TH,Byte8 是时间低字节 TL。例如延时 10 分钟后关闭继电器,则:

时间 T=10 分钟=600 秒, 换算成十六进制为 0x0258, 所以 TH=0x 02, TL=0x 58。

如果 Byte7 和 Byte8 都填 0x00,则不启用延时关闭功能(即继电器闭合后不会主动断 开)。

单路命令码举例(十六进制):

1. 将地址为1的控制板的第1路继电器打开:

发送: 48 3a 01 70 01 01 00 00 45 44 //设备收到该命令后,将第 1 路继电器常闭触点断开,常开触点闭合 应答: 48 3a 01 70 01 01 00 00 45 44 //应答第一路继电器状态

2. 将地址为1的控制板的第1个继电器关闭:

发送: 48 3a 01 70 01 00 00 00 45 44 //设备收到该命令后,将第 1 路继电器常闭触点闭合,常开触点断开应答: 48 3A 01 71 01 00 00 00 45 44 //应答第一路继电器状态

3. 将地址为1的控制板的第1路继电器打开延时10分钟后关闭:

发送: 48 3a 01 70 01 01 02 58 45 44

控制板收到以上命令后,将第1路的继电器常闭触点断开,常开触点闭合,并会返回控制板继电器状态,然后开始计时,10分钟之后将第一路的继电器常闭触点闭合,常开断开。

4. 将地址为1的控制板的第1路继电器打开延时5秒后关闭:

发送: 48 3a 01 70 01 01 00 05 45 44

控制板收到以上命令后,将第1路的继电器常闭触点断开,常开触点闭合,并会返回控制板继电器状态,然后开始计时,5秒之后将第一路的继电器常闭触点闭合,常开断开。

7.1.2 配置指令

当地址码为 0xff 时为广播地址,只有"读控制板参数"命令使用广播地址,其他都不能使用。

表 7.3 ZQWL-IO 配置指令表

	帧头	₹	地址码	命令	8 字节数据	校验和	帧尾	
				码				
读控制板参数	0X48	0X3A	0XFF 或	0x60	任意	前12字节和(只取低8位)	0X45	0X44
			Addr					
应答"读控制板参数"	0X48	0X3A	Addr	0x61	参考表 7.4	前 12 字节和(只取低 8 位)	0X45	0X44
修改波特率	0X48	0X3A	Addr	0x62	参考表 7.5	前12字节和(只取低8位)	0X45	0X44
应答"修改波特率"	0X48	0X3A	Addr	0x63	任意	前12字节和(只取低8位)	0X45	0X44
修改地址码	0X48	0X3A	Addr	0x64	参考表 7.6	前12字节和(只取低8位)	0X45	0X44
应答"修改后地址码"	0X48	0X3A	Addr	0x65	任意	前12字节和(只取低8位)	0X45	0X44
读取版本号	0X48	0X3A	Addr	0x66	任意	前12字节和(只取低8位)	0X45	0X44
应答"读取版本号"	0X48	0X3A	Addr	0x67	参考表 7.7	前12字节和(只取低8位)	0X45	0X44
恢复出厂	0X48	0X3A	Addr	0x68	任意	前12字节和(只取低8位)	0X45	0X44
应答"恢复出厂"	0X48	0X3A	Addr	0x69	任意	前 12 字节和(只取低 8 位)	0X45	0X44
复位	0X48	0X3A	Addr	0x6A	任意	前 12 字节和(只取低 8 位)	0X45	0X44
应答"复位"	0X48	0X3A	Addr	0x6B	任意	前12字节和(只取低8位)	0X45	0X44

表 7.4 控制板参数表

	控制板地址	波特率	数据位	校验位	停止位	未用	未用	未用
字节	DATA 1	DATA 2	DATA 3	DATA 4	DATA 5	DATA 6	DATA 7	DATA 8
		0x01:1200						
		0x02:2400						
		0x03:4800						
		0x04:9600						
		0x05:14400						
		0x06:19200						
		0x07:38400	0x07:7	0x4e: N,不校验	1:1bit			
		0x08:56000	0x08:8	0x45: E,偶校验	2:1.5bit	未用	未用	未用
含义	Addr	0x09:57600	0x09:9	0x44: D,奇校验	3:2bit			
		0x0A:115200						
		0x0B:128000						
		0x0C:230400						
		0x0D:256000						
		0x0E:460800						
		0x0F:921600						
		0x10:1024000						

表 7.5 修改波特率表

字节	DATA 1	DATA 2	DATA 3	DATA 4	DATA 5	DATA 6	DATA 7	DATA 8
含义	修改后波特率	数据位	校验位	停止位	未用	未用	未用	未用
	含义见表 7.4	含义见表	含义见表					
		7.4	7.4					

表 7.6 修改地址表

字节	市	DATA 1	DATA 2	DATA 3	DATA 4	DATA 5	DATA 6	DATA 7	DATA 8
含》		修改后地址	未用						

表 7.7 读取版本号表

字节	DATA 1	DATA 2	DATA 3	DATA 4	DATA 5	DATA 6	DATA 7	DATA 8
含义	·1'	' 0'	·_'	'0'	'4'	·_'	'0'	'0'

版本号为 ascii 字符格式,如"IO-04-00",IO 表示产品类型为 IO 控制板; 04 表示 4 路系列; 00 表示固件版本号。

7.2 Modbus rtu 协议

本控制板实现部分必要的 modbus rtu 协议,通讯格式如下:

Addr Cmd	Data(n 字节)	Crc (2 字节)
----------	------------	------------

Addr 为 0xff 时,是广播地址,所有从机都能接收并处理,必要时要做出回应。广播地址可以用于对控制板的编址以及获取控制板的地址。

控制板实现的功能码如表 7.8 所示。

表 7.8 设备支持的功能码

Cmd	含义	备注
0x01	读线圈	Data: 2 字节起始地址+2 字节线圈个数,线圈个数不能超过 4
0x02	读离散量输入	Data: 2 字节起始地址+2 字节输入点个数,输入点个数不能超过 4
0x03	读寄存器	Data: 2 字节起始地址+2 字节寄存器个数(寄存器含义见表 6.2.1)
0x05	写单个线圈	Data: 2 字节起始地址+2 字节线圈值
0x06	写单个寄存器	Data: 2 字节起始地址+2 字节寄存器值
0x0f	写多个线圈	Data: 2 字节起始地址+2 字节线圈个数+1 字节个数+数值
0x10	写寄存器	Data: 2 字节起始地址+2 字节寄存器数量+1 字节个数+数值

表 7.9 保持寄存器地址以及含义

、设备信息起	足始地址 0x0000		
偏移地址	名称	数据含义	属性
0X0000	控制板地址	取值范围: 0X0000~0X00FF	R/W
0X 0001	波特率	实际波特率除以 100, 比如 12 代表 1200, 96 代	R/W
		表 9600,1152 代表 115200,10240 代表 1024000	
0X 0002	数据位	仅支持 0X0007,0X0008,0X0009 三种	R/W
0X 0003	校验位	0X004E: 不校验;	R/W
		0X0045: 偶校验;	
		0X004F: 奇校验	
0X 0004	停止位	0X0001: 1bit	R/W
		0X0002 : 1.5bit	
		0X0003: 2bit	
0X 0005~	版本号	ASCII 表示,比如"IO-04-00": IO 表示产品类型	R
0X 000c		为 IO 控制板;04 表示 4 路系列;00 表示固件版	
		本号	
0X 000d	恢复出厂	读无意义; 当写 0X0001 时,控制板恢复出厂设	W
		置,写其他值无意义。	
0X 000e	复位	读无意义; 当写 0X0001 时,控制板复位,写其	W
		他值无意义。	
2、DI/DO 状剂	态起始地址 0x1000	(4096)	
偏移地址	名称	数据含义	属性
0x00	第1路DI状态	0x0000: 无信号; 0x0001: 有信号	R
		其他值无意义。	
0x01	第 2 路 DI 状态		R
0x3F	第 64 路 DI 状态		R
0x40 (4160)	第1路 DO 状态	0x0000: 断开; 0x0001: 闭合	R/W

		0x0002:反转	
0x41	第 2 路 DO 状态		R/W
0x7F	第 64 路 DO 状态		R/W
B、DI 脉冲计	数起始地址 0x10A0	(4256)	
偏移地址	名称	数据含义	属性
0x00	第1路脉冲计数	共计4字节,高位在前,低位在后	R/W
0x01			
0x02	第2路脉冲计数	共计4字节,高位在前,低位在后	R/W
0x03			
0X7E	第 64 路脉冲计数	共计4字节,高位在前,低位在后	R/W
0X7F			
l、DO 延时记	通断起始地址 0x11A0	(4512)	
偏移地址	名称	数据含义	 属性
0x00	第1路 DO 延时通断	0x0000: 断开,不带延时; 0x0001: 闭	R/W
		合,延时后断开	
0x01		共计4字节,高位在前,低位在后;单	R/W
0x02		位 ms	
0x03	第 2 路 DO 延时通断	0x0000: 断开,不带延时; 0x0001: 闭	R/W
		合,延时后断开	
0x04		共计4字节,高位在前,低位在后;单	R/W
0x05		位 ms	R/W
0xDD	第64路DO延时通断	0x0000: 断开,不带延时; 0x0001: 闭	R/W
		合,延时后断开	
0xDE		共计4字节,高位在前,低位在后;单	R/W
0xDF		位 ms	R/W

注意:使用协议修改控制板参数时(波特率、地址),如果不慎操作错误而导致无法通讯时,可以按住"RESET"按键并保持 5 秒,等到"SYS"指示灯快闪时(10Hz 左右),松开按键,此时控制板恢复出厂参数,如下:

串口参数:波特率 9600;数据位 8;不校验;1 位停止位;控制板地址:1。

7.3 Modbus rtu 指令码举例

以地址码 addr 为 0x01 为例说明。

1) 读线圈 (功能码: 0x01)

该指令是读取继电器装态,为方便和高效,建议一次读取所有继电器的状态。 外部设备请求帧:

Addr	功能码	起始地址	起始地址	线圈数量	线圈数量	CRC16	CRC16
(ID)		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X01	0X00	0X00	0X00	0X04	计算	获得

控制板响应帧:

Addr	功能码	字节数	线圈状态 CRC16		CRC16
(ID)			(只取低4位)	(高字节)	(低字节)
0X01	0X01	0X01	XX	计	算获得

其中线圈状态 XX 释义如下:

B7 B6		B5 B4		В3	B2	B1	В0
	高 4 个 bit	位无意义		线圈 4	线圈 3	线圈 2	线圈 1

说明:

B0~B3 分别代表控制板 4 个继电器状态(Y1~Y4)。

- 1代表继电器常开触点闭合,常闭触点断开。
- 0代表继电器常开触点断开,常闭触点闭合。

2) 读离散量输入(功能码: 0x02)

该指令是读取设备的开关量输入状态,为方便和高效,建议一次读取所有输入量的状态。外部设备请求帧:

Addr	功能	起始地址	起始地址	输入数量	输入数量	CRC16	CRC16
(ID)	码	(高字节)	(低字节)	(高字节)	(低字节)	(高字节) (低字节)	
0X01	0X02	0X00	0X00	0X00	0X04	计算	获得

控制板响应帧:

Addr	功能码	字节数	输入状态	CRC16	CRC16
(ID)			(只取低4位)	(高字节)	(低字节)
0X01	0X02	0X01	XX	计算	获得

其中输入状态 XX 释义如下:

B7	B6	B5	B4	В3	B2	B1	B0
	高 4 个 bit	位无意义		输入4	输入3	输入 2	输入1

说明:

B0~B3 分别代表控制板 4 个开关量输入状态(X1~X4)。

- 1代表输入接口存在有效信号。
- 0代表输入无有效信号。

3) 读寄存器(功能码: 0x03)

寄存器地址从 0x0000 到 0x000e,一共 15 个寄存器。其含义参见表 7.9 所示。 建议一次读取全部寄存器。

外部设备请求帧:

Addr	功能	起始地址	起始地址	寄存器数量	寄存器数量	CRC16	CRC16
(ID)	码	(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X03	0X00	0X00	0X00	0x0e	计算	获得

控制板响应帧:

Addr	功能	字节	数据 1	数据 1	 数据 30	数据 30	CRC16	CRC16
(ID)	码	数	(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X03	0X1E	XX	XX	 XX	XX	计算获得	

4) 写单个线圈 (功能码: 0x05)

该功能码用来设置单路继电器的状态。

外部设备请求帧:

Addr	功能码	起始地址	起始地址	线圈状态	线圈状态	CRC16	CRC16
(ID)		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X05	0X00	XX	XX	0X00	计算	获得

注意:起始地址(低字节)取值范围是0X00~0X03分别对应控制板的4个继电器(Y1~Y4); 线圈状态(高字节)为0XFF时,对应的继电器常开触点闭合,常闭触点断开; 线圈状态(高字节)为0X00时,对应的继电器常开触点断开,常闭触点闭合。 线圈状态(高字节)为其他值时,继电器状态保持不变。

控制板响应帧:

Addr	功能码	起始地址	起始地址	线圈状态	线圈状态	CRC16	CRC16
(ID)		(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X05	0X00	XX	XX	0X00	计算获得	

5) 写单个寄存器(功能码: 0x06)

用此功能码既可以配置控制板的地址、波特率等参数,也可以复位控制板和恢复出厂设置。

注意:使用协议修改控制板参数时(波特率、地址),如果不慎操作错误而导致无法通讯时,可以按住"RESET"按键并保持 5 秒,等到"SYS"指示灯快闪时(10Hz 左右),松开按键,此时控制板恢复出厂参数,如下:

串口参数:波特率 115200;数据位 8;不校验;1 位停止位;

控制板地址: 1。

外部设备请求帧:

Addr	功能	起始地址	起始地址	寄存器数据	寄存器数据	CRC16	CRC16
(ID)	码	(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X06	0X00	XX	XX	XX	计算	获得

控制板响应帧:

Addr	功能	起始地址	起始地址	寄存器数据	寄存器数据	CRC16	CRC16
(ID)	码	(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X06	0X00	XX	XX	XX	计算	获得

6) 写多个线圈(功能码: 0x0f)

该指令是同时设置多个继电器的状态,建议一次写入所有线圈状态。

外部设备请求帧:

Addr	功能	起始地址	起始地址	线圈数量	线圈数量	字节	线圈	CRC16	CRC16
(ID)	码	(高字节)	(低字节)	(高字节)	(低字节)	数	状态	(高字节)	(低字节)
0X01	0X0F	0X00	XX	0X00	0X04	0X01	XX	计算	拿 获得

其中,线圈状态 XX 只取低 4位,释义如下:

B7	B6	B5	B4	В3	B2	B1	B0
	高 4 个 bit	位无意义		线圈 4	线圈 3	线圈 2	线圈 1

说明:

B0~B3 分别对应控制板的 4 个继电器 Y1~Y4。

- 1代表继电器常开触点闭合,常闭触点断开。
- 0代表继电器常开触点断开,常闭触点闭合。

控制板响应帧:

Addr	功能	起始地址	起始地址	线圈数量	线圈数量	CRC16	CRC16
(ID)	码	(高字节)	(低字节)	(高字节)	(低字节)	(高字节)	(低字节)
0X01	0X0F	0X00	XX	0X00	0X04	计算	获得

7) 写寄存器 (功能码: 0x10)

该指令可设置 DO 状态、DO 继电器延时断开时间、DI 脉冲计数值等。

寄存器地址从 0x0000 到 0x11DF。其含义参见表 7.9 所示。

外部设备请求帧:

Addr	功能	起始地	起始地	寄存器	寄存器	数据	数据	CRC16	CRC16
(ID)	码	址	址(低	数量	数量	个数		(高字节)	(低字节)
		(高字	字节)	(高字	(低字				
		节)		节)	节)				
0X01	0X10	0X10	0X40	0X00	0x01	XX	XX	计算获得	

8. 恢复出厂设置以及固件升级

8.1 恢复出厂设置

控制板有"RESET"按钮,可以用此复位控制板和恢复出厂设置,如图 8.1 所示。

图 8.1 按键

按下"RESET"按键在松开(注意下时间要小于5秒),控制板复位。

按住 "RESET" 按键并保持 5 秒以上,等到 "SYS" 指示灯快闪时(10Hz 左右),松开 按键,此时控制板恢复出厂参数,如下:

串口参数: 波特率 9600; 数据位 8; 不校验; 1 位停止位; 控制板地址: 1。

8.2 模块固件升级

注意,需要升级固件时,先与厂商联系以获取新的固件,使用智嵌物联提供的升级工具进行升级。按照图 8.2 中所示步骤进行固件升级。

图 8.2 固件升级

销售网络

智嵌物联,让连接更稳定!

企业愿景:成为国内物联网设备首选品牌!

企业使命: 为客户利益而努力创新,为推动工业物联网发展而不懈奋斗!

产品理念: 稳定! 稳定! 还是稳定!

服务理念: 客户在哪里, 我们就在哪里!

深圳总部

地址:广东省深圳市宝安区新桥街道新桥社区

新和大道 6-18 号 1203

网址: www.zhiqwl.com 电话: 0755-23203231

北京办事处

地址:北京市房山城区德润街6号院8号楼3层

电话: 18210365439

更多销售网络正在紧张筹备中……

天猫店铺

淘宝店铺

京东店铺

微信公众号

公司官网